Chromosomal-level genome and metabolome analyses of highly heterozygous allohexaploid Dendrocalamus brandisii elucidate shoot quality and developmental characteristics

Jutang Jiang, Zeyu Zhang, Yucong Bai, Xiaojing Wang, Yuping Dou, Ruiman Geng, Chongyang Wu, Hangxiao Zhang, Cunfu Lu, Lianfeng Gu, Jian Gao

PDF
Journal of Integrative Plant Biology ›› 2024, Vol. 66 ›› Issue (6) : 1087-1105. DOI: 10.1111/jipb.13592
Research Article

Chromosomal-level genome and metabolome analyses of highly heterozygous allohexaploid Dendrocalamus brandisii elucidate shoot quality and developmental characteristics

Author information +
History +

Abstract

Dendrocalamus brandisii (Munro) Kurz is a sympodial bamboo species with inimitable taste and flavorful shoots. Its rapid growth and use as high-quality material make this bamboo species highly valued for both food processing and wood applications. However, genome information for D. brandisii is lacking, primarily due to its polyploidy and large genome size. Here, we assembled a high-quality genome for hexaploid D. brandisii, which comprises 70 chromosomes with a total size of 2,756 Mb, using long-read HiFi sequencing. Furthermore, we accurately separated the genome into its three constituent subgenomes. We used Oxford Nanopore Technologies long reads to construct a transcriptomic dataset covering 15 tissues for gene annotation to complement our genome assembly, revealing differential gene expression and post-transcriptional regulation. By integrating metabolome analysis, we unveiled that well-balanced lignin formation, as well as abundant flavonoid and fructose contents, contribute to the superior quality of D. brandisii shoots. Integrating genomic, transcriptomic, and metabolomic datasets provided a solid foundation for enhancing bamboo shoot quality and developing efficient gene-editing techniques. This study should facilitate research on D. brandisii and enhance its use as a food source and wood material by providing crucial genomic resources.

Keywords

bamboo shoots / Dendrocalamus brandisii (Munro) Kurz / flavonoid / genome / lignin

Cite this article

Download citation ▾
Jutang Jiang, Zeyu Zhang, Yucong Bai, Xiaojing Wang, Yuping Dou, Ruiman Geng, Chongyang Wu, Hangxiao Zhang, Cunfu Lu, Lianfeng Gu, Jian Gao. Chromosomal-level genome and metabolome analyses of highly heterozygous allohexaploid Dendrocalamus brandisii elucidate shoot quality and developmental characteristics. Journal of Integrative Plant Biology, 2024, 66(6): 1087‒1105 https://doi.org/10.1111/jipb.13592

References

[1]
Abdel-Ghany, S.E., Hamilton, M., Jacobi, J.L., Ngam, P., Devitt, N., Schilkey, F., Ben-Hur, A., and Reddy, A.S. (2016). A survey of the sorghum transcriptome using single-molecule long reads. Nat. Commun. 7: 1–11.
[2]
Ajayi, O.O., and Showalter, A.M. (2020). Systems identification and characterization of β-glucuronosyltransferase genes involved in arabinogalactan-protein biosynthesis in plant genomes. Sci. Rep. 10: 1–14.
[3]
Allen, E., Xie, Z., Gustafson, A.M., and Carrington, J.C. (2005). microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121: 207–221.
[4]
Bai, Y., Cai, M., Dou, Y., Xie, Y., Zheng, H., and Gao, J. (2023a). Phytohormone crosstalk of cytokinin biosynthesis and signaling family genes in Moso Bamboo (Phyllostachys edulis). Int. J. Mol. Sci. 24: 10863.
[5]
Bai, Y., Dou, Y., Xie, Y., Zheng, H., and Gao, J. (2023b). Phylogeny, transcriptional profile, and auxin-induced phosphorylation modification characteristics of conserved PIN proteins in Moso bamboo (Phyllostachys edulis). Int. J. Biol. Macromol. 234: 123671.
[6]
Bao, Z., and Eddy, S.R. (2002). Automated de novo identification of repeat sequence families in sequenced genomes. Genome Res. 12: 1269–1276.
[7]
Bhandawat, A., Singh, G., Seth, R., Singh, P., and Sharma, R.K. (2016). Genome-wide transcriptional profiling to elucidate key candidates involved in bud burst and rattling growth in a subtropical bamboo (Dendrocalamus hamiltonii). Front. Plant Sci. 7: 2038.
[8]
Boeckmann, B., Bairoch, A., Apweiler, R., Blatter, M.C., Estreicher, A., Gasteiger, E., Martin, M.J., Michoud, K., O'Donovan, C., Phan, I., et al. (2003). The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res. 31: 365–370.
[9]
Burton, J.N., Adey, A., Patwardhan, R.P., Qiu, R., Kitzman, J.O., and Shendure, J. (2013). Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions. Nat. Biotechnol. 31: 1119–1125.
[10]
Chen, M., Guo, L., Ramakrishnan, M., Fei, Z., Vinod, K.K., Ding, Y., Jiao, C., Gao, Z., Zha, R., and Wang, C. (2022). Rapid growth of Moso bamboo (Phyllostachys edulis): Cellular roadmaps, transcriptome dynamics, and environmental factors. Plant Cell 34: 3577–3610.
[11]
Chen, N. (2004). Using Repeat Masker to identify repetitive elements in genomic sequences. Curr. Protoc. Bioinformatics 5: 11–14.
[12]
Cheng, H., Concepcion, G.T., Feng, X., Zhang, H., and Li, H. (2021). Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat. Methods 18: 170–175.
[13]
Chongtham, N., Bisht, M.S., and Haorongbam, S. (2011a). Nutritional properties of bamboo shoots: Potential and prospects for utilization as a health food. Compre. Rev. Food Sci. Food Saf. 10: 153–168.
[14]
Chongtham, N., Bisht, M.S., and Haorongbam, S. (2011b). Nutritional properties of bamboo shoots: potential and prospects for utilization as a health food. Compre. Rev. Food Sci. 10: 153–168.
[15]
Comtrade, U. (2022). The United Nations Commodity Trade Database. Available from: https://comtrade.un.org/labs/data-explorer/
[16]
Dixon, P.G., and Gibson, L.J. (2014). The structure and mechanics of Moso bamboo material. J. R. Soc. Interface 11: 99.
[17]
Ellinghaus, D., Kurtz, S., and Willhoeft, U. (2008). LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons. BMC Bioinform. 9: 1–14.
[18]
Filichkin, S.A., Priest, H.D., Givan, S.A., Shen, R., Bryant, D.W., Fox, S.E., Wong, W.-K., and Mockler, T.C. (2010). Genome-wide mapping of alternative splicing in Arabidopsis thaliana. Genome Res. 20: 45–58.
[19]
Finn, R.D., Mistry, J., Schuster-Bockler, B., Griffiths-Jones, S., Hollich, V., Lassmann, T., Moxon, S., Marshall, M., Khanna, A., Durbin, R., et al. (2006). Pfam: Clans, web tools and services. Nucleic Acids Res. 34: D247–D251.
[20]
Flynn, J.M., Hubley, R., Goubert, C., Rosen, J., Clark, A.G., Feschotte, C., and Smit, A.F. (2020). RepeatModeler2 for automated genomic discovery of transposable element families. Proc. Nat. Acad. Sci. U.S.A. 117: 9451–9457.
[21]
Friedlander, M.R., Mackowiak, S.D., Li, N., Chen, W., and Rajewsky, N. (2012). miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res. 40: 37–52.
[22]
Gao, Q., Jiang, H., Tang, F., Cao, H.-q., Wu, X.-w., Qi, F.-f., Sun, J., and Yang, J. (2019). Evaluation of the bitter components of bamboo shoots using a metabolomics approach. Food Func. 10: 90–98.
[23]
Geo, P., and Mihaela, P. (2020). GFF utilities: GffRead and GffCompare. F1000Res. 9: 2020.
[24]
Gomez-Perez, D., and Kemen, E. (2021). Predicting lifestyle from positive selection data and genome properties in oomycetes. Pathogens 10: 807.
[25]
Guo, Z., Ma, P., Yang, G., Hu, J., Liu, L., Xia, E., Zhong, M., Zhao, L., Sun, G.L., Xu, Y.X., et al. (2019). Genome sequences provide insights into the reticulate origin and unique traits of woody bamboos. Mol. Plant 12: 1353–1365.
[26]
Haas, B.J., Salzberg, S.L., Zhu, W., Pertea, M., Allen, J.E., Orvis, J., White, O., Buell, C.R., and Wortman, J.R. (2008). Automated eukaryotic gene structure annotation using EVidenceModeler and the program to assemble spliced alignments. Genome Biol. 9: 1–22.
[27]
Han, M.V., Thomas, G.W., Lugo-Martinez, J., and Hahn, M.W. (2013). Estimating gene gain and loss rates in the presence of error in genome assembly and annotation using CAFE 3. Mol. Biol. Evol. 30: 1987–1997.
[28]
He, T.-Y., Zheng, J.-M., Chen, L.-Y., Rong, J.-D., and Zheng, Y.-S. (2020). Complete plastid genome of Dendrocalamus brandisii (Poaceae, Bambusoideae). Mitochondr. DNA Part B 5: 1286–1287.
[29]
Hendra, R., Ahmad, S., Sukari, A., Shukor, M.Y., and Oskoueian, E. (2011). Flavonoid analyses and antimicrobial activity of various parts of Phaleria macrocarpa (Scheff.) Boerl fruit. Int. J. Mol. Sci. 12: 3422–3431.
[30]
Herrmann, C.J., Schmidt, R., Kanitz, A., Artimo, P., Gruber, A.J., and Zavolan, M. (2020). PolyASite 2.0: A consolidated atlas of polyadenylation sites from 3′ end sequencing. Nucleic Acids Res. 48: D174–D179.
[31]
Huang, X., Wang, W., Gong, T., Wickell, D., Kuo, L.-Y., Zhang, X., Wen, J., Kim, H., Lu, F., and Zhao, H. (2022). The flying spider-monkey tree fern genome provides insights into fern evolution and arborescence. Nat. Plants 8: 500–512.
[32]
Huerta-Cepas, J., Szklarczyk, D., Heller, D., Hernandez-Plaza, A., Forslund, S.K., Cook, H., Mende, D.R., Letunic, I., Rattei, T., Jensen, L.J., et al. (2019). eggNOG 5.0: A hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47: D309–D314.
[33]
Jurka, J., Kapitonov, V.V., Pavlicek, A., Klonowski, P., Kohany, O., and Walichiewicz, J. (2005). Repbase update, a database of eukaryotic repetitive elements. Cytogenet. Genome. Res. 110: 462–467.
[34]
Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M., and Tanabe, M. (2016). KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 44: D457–D462.
[35]
Keilwagen, J., Wenk, M., Erickson, J.L., Schattat, M.H., Grau, J., and Hartung, F. (2016). Using intron position conservation for homology-based gene prediction. Nucleic Acids Res. 44: e89.
[36]
Kim, D., Langmead, B., and Salzberg, S.L. (2015). HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 12: 357–360.
[37]
Komatsuda, T., Pourkheirandish, M., He, C., Azhaguvel, P., Kanamori, H., Perovic, D., Stein, N., Graner, A., Wicker, T., Tagir, A., et al. (2007). Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene. Proc. Nat. Acad. Sci. U.S.A. 104: 1424–1429.
[38]
Korf, I. (2004). Gene finding in novel genomes. BMC Bioinform. 5: 1–9.
[39]
Langmead, B., Trapnell, C., Pop, M., and Salzberg, S.L. (2009). Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10: R25.
[40]
Li, D. (1997). The biodiversity and conservation of bamboos in Yunnan, China. The Bamboos 13: 83–94.
[41]
Li, H. (2018). Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics 34: 3094–3100.
[42]
Li, H., and Durbin, R. (2009). Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25: 1754–1760.
[43]
Li, L., Cheng, Z., Ma, Y., Bai, Q., Li, X., Cao, Z., Wu, Z., and Gao, J. (2018). The association of hormone signalling genes, transcription and changes in shoot anatomy during moso bamboo growth. Plant Biotechnol. J. 16: 72–85.
[44]
Li, R., Li, Y., Kristiansen, K., and Wang, J. (2008). SOAP: Short oligonucleotide alignment program. Bioinformatics 24: 713–714.
[45]
Li, R., Zhu, H., Ruan, J., Qian, W., Fang, X., Shi, Z., Li, Y., Li, S., Shan, G., and Kristiansen, K. (2010). De novo assembly of human genomes with massively parallel short read sequencing. Genome Res. 20: 265–272.
[46]
Liu, M., Li, W., Wang, H., Zhang, X., and Yu, Y. (2020). The distribution of Furfuryl Alcohol (FA) resin in bamboo materials after surface furfurylation. Materials 13: 1157.
[47]
Lv, Z., Yu, L., Zhan, H., Li, J., Wang, C., Huang, L., and Wang, S. (2023). Shoot differentiation from Dendrocalamus brandisii callus and the related physiological roles of sugar and hormones during shoot differentiation. Tree Physiol. 43: 1159–1186.
[48]
Martins, I.L., Charneira, C., Gandin, V., Ferreira da Silva, J.L., Justino, G.C., Telo, J.P., Vieira, A.J., Marzano, C., and Antunes, A.M. (2015). Selenium-containing chrysin and quercetin derivatives: Attractive scaffolds for cancer therapy. J. Med. Chem. 58: 4250–4265.
[49]
Nawrocki, E.P., and Eddy, S.R. (2013). Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics 29: 2933–2935.
[50]
Neumann, P., Novák, P., Hoštáková, N., and Macas, J. (2019). Systematic survey of plant LTR-retrotransposons elucidates phylogenetic relationships of their polyprotein domains and provides a reference for element classification. Mob. DNA 10: 1–17.
[51]
Nguyen, L.-T., Schmidt, H.A., Von Haeseler, A., and Minh, B.Q. (2015). IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32: 268–274.
[52]
Nirmala, C., David, E., and Sharma, M. (2007). Changes in nutrient components during ageing of emerging juvenile bamboo shoots. Int. J. Food Sci. Nutr. 58: 612–618.
[53]
Ou, S., Chen, J., and Jiang, N. (2018). Assessing genome assembly quality using the LTR Assembly Index (LAI). Nucleic Acids Res. 46: e126.
[54]
Ou, S., and Jiang, N. (2018). LTR_retriever: A highly accurate and sensitive program for identification of long terminal repeat retrotransposons. Plant Physiol. 176: 1410–1422.
[55]
Pandey, A.K., and Ojha, V. (2013). Standardization of harvesting age of bamboo shoots with respect to nutritional and anti-nutritional components. J. Forestry Res. 24: 83–90.
[56]
Parra, G., Bradnam, K., and Korf, I. (2007). CEGMA: A pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics 23: 1061–1067.
[57]
Peng, Z., Lu, Y., Li, L., Zhao, Q., Feng, Q., Gao, Z., Lu, H., Hu, T., Yao, N., Liu, K., et al. (2013). The draft genome of the fast-growing non-timber forest species moso bamboo (Phyllostachys heterocycla). Nat. Genet. 45: 456–461.
[58]
Pertea, M., Pertea, G.M., Antonescu, C.M., Chang, T.-C., Mendell, J.T., and Salzberg, S.L. (2015). StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33: 290–295.
[59]
Price, A.L., Jones, N.C., and Pevzner, P.A. (2005). De novo identification of repeat families in large genomes. Bioinformatics 21: i351–i358.
[60]
Puttick, M.N. (2019). MCMCtreeR: Fnctions to prepare MCMCtree analyses and visualize posterior ages on trees. Bioinformatics 35: 5321–5322.
[61]
Rice, P., Longden, I., and Bleasby, A. (2000). EMBOSS: The European molecular biology open software suite. Trends Genet. 16: 276–277.
[62]
Robinson, M.D., McCarthy, D.J., and Smyth, G.K. (2010). edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26: 139–140.
[63]
Scurlock, J.M., Dayton, D.C., and Hames, B. (2000). Bamboo: An overlooked biomass resource? Biomass Bioenergy 19: 229–244.
[64]
Seethalakshmi, K., Kumar, M.M., Pillai, K.S., and Sarojam, N. (1998). Bamboos of India: A compendium (Brill: Boston, MA, USA).
[65]
Servant, N., Varoquaux, N., Lajoie, B.R., Viara, E., Chen, C.J., Vert, J.P., Heard, E., Dekker, J., and Barillot, E. (2015). HiC-Pro: An optimized and flexible pipeline for Hi-C data processing. Genome Biol. 16: 259.
[66]
Simão, F.A., Waterhouse, R.M., Ioannidis, P., Kriventseva, E.V., and Zdobnov, E.M. (2015). BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31: 3210–3212.
[67]
Stanke, M., Diekhans, M., Baertsch, R., and Haussler, D. (2008). Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinformatics 24: 637–644.
[68]
Sun, J., Ding, Z.-Q., Gao, Q., Xun, H., Tang, F., and Xia, E.-D. (2016). Major chemical constituents of bamboo shoots (Phyllostachys pubescens): Qualitative and quantitative research. J. Agri. Food Chem. 64: 2498–2505.
[69]
Tang, S., Lomsadze, A., and Borodovsky, M. (2015). Identification of protein coding regions in RNA transcripts. Nucleic Acids Res. 43: e78.
[70]
Teng, J., Xiang, T., Huang, Z., Wu, J., Jiang, P., Meng, C., Li, Y., and Fuhrmann, J.J. (2016). Spatial distribution and variability of carbon storage in different sympodial bamboo species in China. J. Environ. Manage. 168: 46–52.
[71]
Trincado, J.L., Entizne, J.C., Hysenaj, G., Singh, B., Skalic, M., Elliott, D.J., and Eyras, E. (2018). SUPPA2: Fast, accurate, and uncertainty-aware differential splicing analysis across multiple conditions. Genome Biol. 19: 40.
[72]
User, G.B.O. (2023). Occurrence download. (GBIF: Copenhagen, Denmark).
[73]
Venkatachalam, P., Kalaiarasi, K., and Sreeramanan, S. (2015). Influence of plant growth regulators (PGRs) and various additives on in vitro plant propagation of Bambusa arundinacea (Retz.) Wild: A recalcitrant bamboo species. J. Genet. Eng. Biotechnol. 13: 193–200.
[74]
Vurture, G.W., Sedlazeck, F.J., Nattestad, M., Underwood, C.J., Fang, H., Gurtowski, J., and Schatz, M.C. (2017). GenomeScope: Fast reference-free genome profiling from short reads. Bioinformatics 33: 2202–2204.
[75]
Wang, K., Peng, H., Lin, E., Jin, Q., Hua, X., Yao, S., Bian, H., Han, N., Pan, J., Wang, J., et al. (2010). Identification of genes related to the development of bamboo rhizome bud. J. Exp. Bot. 61: 551–561.
[76]
Wei, Q., Guo, L., Jiao, C., Fei, Z., Chen, M., Cao, J., Ding, Y., and Yuan, Q. (2019). Characterization of the developmental dynamics of the elongation of a bamboo internode during the fast growth stage. Tree Physiol. 39: 1201–1214.
[77]
Wheeler, T.J., Clements, J., Eddy, S.R., Hubley, R., Jones, T.A., Jurka, J., Smit, A.F., and Finn, R.D. (2012). Dfam: A database of repetitive DNA based on profile hidden Markov models. Nucleic Acids Res. 41: D70–D82.
[78]
Xu, Z., and Wang, H. (2007). LTR_FINDER: An efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res. 35: W265–W268.
[79]
Yang, J.B., Dong, Y.R., Wong, K.M., Gu, Z.J., Yang, H.Q., and Li, Z. (2018). Genetic structure and differentiation in Dendrocalamus sinicus (Poaceae: Bambusoideae) populations provide insight into evolutionary history and speciation of woody bamboos. Sci. Rep. 8: 16933.
[80]
Yang, Z. (1997). PAML: A program package for phylogenetic analysis by maximum likelihood. Computer App. Biosci. 13: 555–556.
[81]
Zhan, H., Zhang, L.-y., Deng, L., Niu, Z.-h., Li, M.-b., Wang, C.-m., and Wang, S. (2018). Physiological and anatomical response of foliar silicon application to Dendrocalamus brandisii plantlet leaves under chilling. Acta Physiol. Plant. 40: 1–14.
[82]
Zhang, T., and Wan, J. (2004). The organizationl culture and quick proliferate propation of Dendrocalamus brandisi. J. Yunnan Minzu Univ. Nat. Sci. Ed. 13: 203–206.
[83]
Zhao, H., Gao, Z., Wang, L., Wang, J., Wang, S., Fei, B., Chen, C., Shi, C., Liu, X., Zhang, H., et al. (2018). Chromosome-level reference genome and alternative splicing atlas of moso bamboo (Phyllostachys edulis). Gigascience 7: giy115.
[84]
Zheng, Y., Yang, D., Rong, J., Chen, L., Zhu, Q., He, T., Chen, L., Ye, J., Fan, L., Gao, Y., et al. (2022). Allele-aware chromosome-scale assembly of the allopolyploid genome of hexaploid Ma bamboo (Dendrocalamus latiflorus Munro). J. Integr. Plant. Biol. 64: 649–670.
[85]
Zhong, Y., Chen, W., and Tan, H. (2019). A study of tissue culture and seedling transplanting technology for dendrocalamus brandiss. World Bamboo Rattan 17: 31–35.
[86]
Zwaenepoel, A., and Van de Peer, Y. (2019). wgd—Simple command line tools for the analysis of ancient whole-genome duplications. Bioinformatics 35: 2153–2155.

RIGHTS & PERMISSIONS

2023 2023 The Authors. Journal of Integrative Plant Biology published by John Wiley & Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.
PDF

Accesses

Citations

Detail

Sections
Recommended

/