Trade-offs between the accumulation of cuticular wax and jasmonic acid-mediated herbivory resistance in maize
Jiong Liu, Lu Li, Zhilong Xiong, Christelle A.M. Robert, Baozhu Li, Shan He, Wenjie Chen, Jiasheng Bi, Guanqing Zhai, Siyi Guo, Hui Zhang, Jieping Li, Shutang Zhou, Xi Zhang, Chun-Peng Song
Trade-offs between the accumulation of cuticular wax and jasmonic acid-mediated herbivory resistance in maize
Plants have evolved complex physical and chemical defense systems that allow them to withstand herbivory infestation. Composed of a complex mixture of very-long-chain fatty acids (VLCFAs) and their derivatives, cuticular wax constitutes the first physical line of defense against herbivores. Here, we report the function of Glossy 8 (ZmGL8), which encodes a 3-ketoacyl reductase belonging to the fatty acid elongase complex, in orchestrating wax production and jasmonic acid (JA)-mediated defenses against herbivores in maize (Zea mays). The mutation of GL8 enhanced chemical defenses by activating the JA-dependent pathway. We observed a trade-off between wax accumulation and JA levels across maize glossy mutants and 24 globally collected maize inbred lines. In addition, we demonstrated that mutants defective in cuticular wax biosynthesis in Arabidopsis thaliana and maize exhibit enhanced chemical defenses. Comprehensive transcriptomic and lipidomic analyses indicated that the gl8 mutant confers chemical resistance to herbivores by remodeling VLCFA-related lipid metabolism and subsequent JA biosynthesis and signaling. These results suggest that VLCFA-related lipid metabolism has a critical role in regulating the trade-offs between cuticular wax and JA-mediated chemical defenses.
cuticular wax / fall armyworm / herbivore resistance / jasmonic acid / maize / plant-herbivore interactions
[1] |
Aharoni, A., Dixit, S., Jetter, R., Thoenes, E., van Arkel, G., and Pereira, A. (2004). The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis. Plant Cell 16: 2463-2480.
|
[2] |
Barros, J., and Dixon, R.A. (2020). Plant phenylalanine/tyrosine ammonia-lyases. Trends Plant Sci. 25: 66-79.
|
[3] |
Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate—A practical and powerful approach to multiple testing. J. R. Stat. Soc. B: Stat. Methodol. 57: 289-300.
|
[4] |
Bezrutczyk, M., Zöllner, N.R., Kruse, C.P.S., Hartwig, T., Lautwein, T., Köhrer, K., Frommer, W.B., and Kim, J.-Y. (2021). Evidence for phloem loading via the abaxial bundle sheath cells in maize leaves. Plant Cell 33: 531-547.
|
[5] |
Blanc, C., Coluccia, F., L'Haridon, F., Torres, M., Ortiz-Berrocal, M., Stahl, E., Reymond, P., Schreiber, L., Nawrath, C., Metraux, J.P., et al. (2018). The cuticle mutant eca2 modifies plant defense responses to biotrophic and necrotrophic pathogens and herbivory insects. Mol. Plant Microbe. Interact. 31: 344-355.
|
[6] |
Bodnaryk, R.P. (1992). Leaf epicuticular wax, an antixenotic factor in Brassicaceae that affects the rate and pattern of feeding of flea beetles, Phyllotreta cruciferae (Goeze). Can. J. Plant Sci. 72: 1295-1303.
|
[7] |
Borrego, E., and Kolomiets, M. (2016). Synthesis and functions of jasmonates in maize. Plants 5: 41.
|
[8] |
Castorina, G., Domergue, F., Chiara, M., Zilio, M., Persico, M., Ricciardi, V., Horner, D.S., and Consonni, G. (2020). Drought-responsive ZmFDL1/MYB94 regulates cuticle biosynthesis and cuticle-dependent leaf permeability. Plant Physiol. 184: 266-282.
|
[9] |
Chen, A., Xiang, W., Liu, D., Liu, C., and Yang, L. (2016). Determination of total flavonoids and its antioxidant ability in Houttuynia cordata. J. Mater. Sci. Chem. Eng. 4: 131-136.
|
[10] |
Chen, K., Li, G.J., Bressan, R.A., Song, C.P., Zhu, J.K., and Zhao, Y. (2020). Abscisic acid dynamics, signaling, and functions in plants. J. Mater. Sci. Chem. Eng. 62: 25-54.
|
[11] |
Cornelissen, J.H.C., Gwynn-Jones, D., van Logtestijn, R.S.P., Quested, H.M., Callaghan, T.V., and Aerts, R. (2009). A spectrum of ecological studies. In A Hypothesized Triangular Model Combining Tradeoffs of Foliar Defence Quality and Quantity: Support from Subarctic Seed Plant Species, D. Ming, M.J.A. Werger, eds. (China: Southwest China Normal University Press), pp. 36-44.
|
[12] |
Cui, F., Brosche, M., Lehtonen, M.T., Amiryousefi, A., Xu, E., Punkkinen, M., Valkonen, J.P., Fujii, H., and Overmyer, K. (2016). Dissecting abscisic acid signaling pathways involved in cuticle formation. Mol. Plant 9: 926-938.
|
[13] |
Cutler, S.R., Rodriguez, P.L., Finkelstein, R.R., and Abrams, S.R. (2010). Abscisic acid: Emergence of a core signaling network. Annu. Rev. Plant Biol. 61: 651-679.
|
[14] |
Descombes, P., Kergunteuil, A., Glauser, G., Rasmann, S., Pellissier, L., and Oduor, A. (2019). Plant physical and chemical traits associated with herbivory in situ and under a warming treatment. J. Ecol. 108: 733-749.
|
[15] |
Dietrich, C.R., Perera, M.A., M, D.Y.-N., Meeley, R.B., Nikolau, B.J., and Schnable, P.S. (2005). Characterization of two GL8 paralogs reveals that the 3-ketoacyl reductase component of fatty acid elongase is essential for maize (Zea mays L.) development. Plant J. 42: 844-861.
|
[16] |
Du, Z.Y., Xiao, S., Chen, Q.F., and Chye, M.L. (2010). Depletion of the membrane-associated acyl-coenzyme A-binding protein ACBP1 enhances the ability of cold acclimation in Arabidopsis. Plant Physiol. 152: 1585-1597.
|
[17] |
Eigenbrode, S.D., and Espelie, K.E. (1995). Effects of plant epicuticular lipids on insect herbivores. Annu. Rev. Entomol. 40: 171-194.
|
[18] |
Eigenbrode, S.D., and Jetter, R. (2002). Attachment to plant surface waxes by an insect predator. Integr. Comp. Biol. 42: 1091-1099.
|
[19] |
Erb, M., Meldau, S., and Howe, G.A. (2012). Role of phytohormones in insect-specific plant reactions. Trends Plant Sci. 17: 250-259.
|
[20] |
Fich, E.A., Segerson, N.A., and Rose, J.K. (2016). The plant polyester cutin: Biosynthesis, structure, and biological roles. Annu. Rev. Plant Biol. 67: 207-233.
|
[21] |
Glauser, G., Vallat, A., and Balmer, D. (2014). Hormone profiling. In Arabidopsis Protocols, G. Glauser, A. Vallat, D. Balmer, eds (Totowa, NJ: Humana Press), pp. 597-608.
|
[22] |
Hansjakob, A., Riederer, M., and Hildebrandt, U. (2011). Wax matters: Absence of very-long-chain aldehydes from the leaf cuticular wax of the glossy11 mutant of maize compromises the prepenetration processes of Blumeria graminis. Plant Pathol. 60: 1151-1161.
|
[23] |
Hegebarth, D., Buschhaus, C., Joubes, J., Thoraval, D., Bird, D., and Jetter, R. (2017). Arabidopsis ketoacyl-CoA synthase 16 (KCS16) forms C36/C38 acyl precursors for leaf trichome and pavement surface wax. Plant Cell Environ. 40: 1761-1776.
|
[24] |
Herve, M.R. (2022). Testing and plotting procedures for biostatistics. Package RVAideMemoire, Available from:
|
[25] |
Howe, G.A., and Schilmiller, A.L. (2002). Oxylipin metabolism in response to stress. Curr. Opin. Plant Biol. 5: 230-236.
|
[26] |
Hu, L., Ye, M., and Erb, M. (2019). Integration of two herbivore-induced plant volatiles results in synergistic effects on plant defence and resistance. Plant Cell Environ. 42: 959-971.
|
[27] |
Hurlock, A.K., Roston, R.L., Wang, K., and Benning, C. (2014). Lipid trafficking in plant cells. Traffic 15: 915-932.
|
[28] |
Jetter, R., Kunst, L., Samuels, A.L. (2008). Composition of plant cuticular waxes. In Biology of the plant cuticle, M. Riederer and C. Mullereds, eds, Volume 23 (Oxford, UK: Blackwell), pp. 145-181.
|
[29] |
Joubes, J., Raffaele, S., Bourdenx, B., Garcia, C., Laroche-Traineau, J., Moreau, P., Domergue, F., and Lessire, R. (2008). The VLCFA elongase gene family in Arabidopsis thaliana: Phylogenetic analysis, 3D modelling and expression profiling. Plant Mol. Biol. 67: 547-566.
|
[30] |
Karki, N., Johnson, B.S., and Bates, P.D. (2019). Metabolically distinct pools of phosphatidylcholine are involved in trafficking of fatty acids out of and into the chloroplast for membrane production. Plant Cell 31: 2768-2788.
|
[31] |
Kelly, A.A., Kalisch, B., Holzl, G., Schulze, S., Thiele, J., Melzer, M., Roston, R.L., Benning, C., and Dormann, P. (2016). Synthesis and transfer of galactolipids in the chloroplast envelope membranes of Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A. 113: 10714-10719.
|
[32] |
Kondoh, M., and Williams, I.S. (2001). Compensation behaviour by insect herbivores and natural enemies: Its influence on community structure. Oikos 93: 161-167.
|
[33] |
Kong, L., Liu, Y., Zhi, P., Wang, X., Xu, B., Gong, Z., and Chang, C. (2020). Origins and evolution of cuticle biosynthetic machinery in land plants. Plant Physiol. 184: 1998-2010.
|
[34] |
Lackman, P., González-Guzmán, M., Tilleman, S., Carqueijeiro, I., Pérez, A.C., Moses, T., Seo, M., Kanno, Y., Häkkinen, S.T., Van Montagu, M.C.E., et al. (2011). Jasmonate signaling involves the abscisic acid receptor PYL4 to regulate metabolic reprogramming in Arabidopsis and tobacco. Proc. Natl. Acad. Sci. U.S.A. 108: 5891-5896.
|
[35] |
Lee, S.B., and Suh, M.C. (2015). Advances in the understanding of cuticular waxes in Arabidopsis thaliana and crop species. Plant Cell Rep. 34: 557-572.
|
[36] |
Lenth, R.V. (2016). Least-squares means: The R package lsmeans. J. Stat. Softw. 69: 1-33.
|
[37] |
Lewandowska, M., Keyl, A., and Feussner, I. (2020). Wax biosynthesis upon danger: Its regulation upon abiotic and biotic stress. New Phytol. 227: 698-713.
|
[38] |
Li-Beisson, Y., Shorrosh, B., Beisson, F., Andersson, M.X., Arondel, V., Bates, P.D., Baud, S., Bird, D., Debono, A., Durrett, T.P., et al. (2013). The Arabidopsis book. In Acyl-Lipid Metabolism, C.R. Somerville, E.M. Meyerowitz, eds (Rockville, MD, USA: The American Society of Plant Biologists), pp. e0161.
|
[39] |
Li, F., Song, J., Zhang, Y., Wang, S., Wang, J., Lin, L., Yang, C., Li, P., and Huang, H. (2021). LINT-Web: A web-based lipidomic data mining tool using intra-omic integrative correlation strategy. Small Methods 5: e2100206.
|
[40] |
Li, L., Du, Y.C., He, C., Dietrich, C.R., Li, J.K., Ma, X.L., Wang, R., Liu, Q., Liu, S.Z., Wang, G.Y., et al. (2019). Maize glossy6 is involved in cuticular wax deposition and drought tolerance. J. Exp. Bot. 70: 3089-3099.
|
[41] |
Li, L., Li, D., Liu, S., Ma, X., Dietrich, C.R., Hu, H.C., Zhang, G., Liu, Z., Zheng, J., Wang, G., et al. (2013). The maize glossy13 gene, cloned via BSR-Seq and Seq-walking encodes a putative ABC transporter required for the normal accumulation of epicuticular waxes. PLoS ONE 8: e82333.
|
[42] |
Li, N., Xu, C., Li-Beisson, Y., and Philippar, K. (2016). Fatty acid and lipid transport in plant cells. Trends Plant Sci. 21: 145-158.
|
[43] |
Lin, Y.T., Chen, L.J., Herrfurth, C., Feussner, I., and Li, H.M. (2016). Reduced biosynthesis of digalactosyldiacylglycerol, a major chloroplast membrane lipid, leads to oxylipin overproduction and phloem cap lignification in Arabidopsis. Plant Cell 28: 219-232.
|
[44] |
Love, M.I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq. 2. Genome Biol. 15: 1-21.
|
[45] |
Lu, S., Liu, H., Jin, C., Li, Q., and Guo, L. (2019). An efficient and comprehensive plant glycerolipids analysis approach based on high-performance liquid chromatography-quadrupole time-of-flight mass spectrometer. Plant Direct 3: e00183.
|
[46] |
Luzarowska, U., Russ, A.K., Joubes, J., Batsale, M., Szymanski, J., Thirumalaikumar, V.P., Luzarowski, M., Wu, S., Zhu, F., Endres, N., et al. (2023). Hello darkness, my old friend: 3-KETOACYL-COENZYME A SYNTHASE4 is a branch point in the regulation of triacylglycerol synthesis in Arabidopsis thaliana. Plant Cell 2023: 1-22.
|
[47] |
Maag, D., Dalvit, C., Thevenet, D., Kohler, A., Wouters, F.C., Vassao, D.G., Gershenzon, J., Wolfender, J.L., Turlings, T.C., Erb, M., et al. (2014). 3-β-D-Glucopyranosyl-6-methoxy-2-benzoxazolinone (MBOA-N-Glc) is an insect detoxification product of maize 1,4-benzoxazin-3-ones. Phytochemistry 102: 97-105.
|
[48] |
McFarlane, H.E., Watanabe, Y., Yang, W.L., Huang, Y., Ohlrogge, J., and Samuels, A.L. (2014). Golgi- and trans-golgi network-mediated vesicle trafficking is required for wax secretion from epidermal cells. Plant Physiol. 164: 1250-1260.
|
[49] |
Michaud, M., and Jouhet, J. (2019). Lipid trafficking at membrane contact sites during plant development and stress response. Front. Plant Sci. 10: 2.
|
[50] |
Mori, M. (1982). n-Hexacosanol and n-octacosanol: Feeding stimulants for larvae of the silkworm Bombyx mori. Insect Physiol. 28: 969-973.
|
[51] |
Negin, B., Hen-Avivi, S., Almekias-Siegl, E., Shachar, L., Jander, G., and Aharoni, A. (2023). Tree tobacco (Nicotiana glauca) cuticular wax composition is essential for leaf retention during drought, facilitating a speedy recovery following rewatering. New Phytol. 237: 1574-1589.
|
[52] |
Negin, B., Shachar, L., Meir, S., Ramirez, C.C., Horowitz, A.R., Jander, G., and Aharoni, A. (2023). Fatty alcohols, a minor component of the tree tobacco surface wax, are associated with defense against caterpillar herbivory. Plant Cell Environ. 47: 664-681.
|
[53] |
Okazaki, Y., and Saito, K. (2014). Roles of lipids as signaling molecules and mitigators during stress response in plants. Plant J. 79: 584-596.
|
[54] |
Pan, Z., Liu, M., Zhao, H., Tan, Z., Liang, K., Sun, Q., Gong, D., He, H., Zhou, W., and Qiu, F. (2020). ZmSRL5 is involved in drought tolerance by maintaining cuticular wax structure in maize. J. Integr. Plant Biol. 62: 1895-1909.
|
[55] |
Pertea, M., Kim, D., Pertea, G.M., Leek, J.T., and Salzberg, S.L. (2016). Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat. Protoc. 11: 1650-1667.
|
[56] |
Raven, J.A. (1998). Plant resource allocation. Trends. Ecol. Evol. 13: 84-85.
|
[57] |
Rayapuram, C., and Baldwin, I.T. (2006). Using nutritional indices to study LOX3-dependent insect resistance. Plant Cell Environ. 29: 1585-1594.
|
[58] |
Read, J., Sanson, G.D., Caldwell, E., Clissold, F.J., Chatain, A., Peeters, P., Lamont, B.B., De Garine-Wichatitsky, M., Jaffre, T., and Kerr, S. (2009). Correlations between leaf toughness and phenolics among species in contrasting environments of Australia and New Caledonia. Ann. Bot. 103: 757-767.
|
[59] |
Richter, A., Powell, A.F., Mirzaei, M., Wang, L.J., Movahed, N., Miller, J.K., Pineros, M.A., and Jander, G. (2021). Indole-3-glycerolphosphate synthase, a branchpoint for the biosynthesis of tryptophan, indole, and benzoxazinoids in maize. Plant J. 106: 245-257.
|
[60] |
Saltveit, M.E., Choi, Y.-J., and Tomas-Barberan, F.A. (2005). Involvement of components of the phospholipid-signaling pathway in wound-induced phenylpropanoid metabolism in lettuce (Lactuca sativa) leaf tissue. Physiol. Plant. 125: 345-355.
|
[61] |
Samuels, L., Kunst, L., and Jetter, R. (2008). Sealing plant surfaces: Cuticular wax formation by epidermal cells. Annu. Rev. Plant Biol. 59: 683-707.
|
[62] |
Schultz, J.C., Appel, H.M., Ferrieri, A.P., and Arnold, T.M. (2013). Flexible resource allocation during plant defense responses. Front. Plant Sci. 4: 324.
|
[63] |
Siemens, D.H., Keck, A.G., and Ziegenbein, S. (2010). Optimal defense in plants: Assessment of resource allocation costs. Evol. Ecol. 24: 1291-1305.
|
[64] |
Siren, J., Valimaki, N., and Makinen, V. (2014). Indexing graphs for path queries with applications in genome research. IEEE/ACM. Trans. Comput. Biol. Bioinform. 11: 375-388.
|
[65] |
Waldbauer, G.P. (1968). The consumption and utilization of food by insects. In Advances in insect physiology, Volume 5 (Cambridge, MA: Academic Press), pp. 229-288.
|
[66] |
Wan, H., Liu, H., Zhang, J., Lyu, Y., Li, Z., He, Y., Zhang, X., Deng, X., Brotman, Y., Fernie, A.R., et al. (2020). Lipidomic and transcriptomic analysis reveals reallocation of carbon flux from cuticular wax into plastid membrane lipids in a glossy “Newhall” navel orange mutant. Hort. Res. 7: 41.
|
[67] |
Wang, H., Guo, S., Qiao, X., Guo, J., Li, Z., Zhou, Y., Bai, S., Gao, Z., Wang, D., Wang, P., et al. (2019). BZU2/ZmMUTE controls symmetrical division of guard mother cell and specifies neighbor cell fate in maize. PLoS Genet. 15: e1008377.
|
[68] |
Wang, Q., Du, X., Zhou, Y., Xie, L., Bie, S., Tu, L., Zhang, N., Yang, X., Xiao, S., and Zhang, X. (2020). The β-ketoacyl-CoA synthase KCS13 regulates the cold response in cotton by modulating lipid and oxylipin biosynthesis. J. Exp. Bot. 71: 5615-5630.
|
[69] |
Wang, W.J., Liu, X.W., Gai, X.S., Ren, J.J., Liu, X.F., Cai, Y.L., Wang, Q., and Ren, H.Z. (2015). Cucumis sativus L. WAX2 plays a pivotal role in wax biosynthesis, influencing pollen fertility and plant biotic and abiotic stress responses. Plant Cell Physiol. 56: 1339-1354.
|
[70] |
Wasternack, C., and Hause, B. (2013). Jasmonates: Biosynthesis, perception, signal transduction and action in plant stress response, growth and development. Ann. Bot. 111: 1021-1058.
|
[71] |
Way, M.J., and Murdie, G. (1965). An example of varietal variations in resistance of Brussels sprouts. Ann. Appl. Biol. 56: 326-328.
|
[72] |
Wei, X., Mao, L., Wei, X., Guan, W., Chen, R., and Luo, Z. (2022). AchMYC2 promotes JA-mediated suberin polyphenolic accumulation via the activation of phenylpropanoid metabolism-related genes in the wound healing of kiwifruit (Actinidia chinensis). Postharvest Biol. Technol. 188: 111896.
|
[73] |
Williams, I.S. (1999). Slow-growth, high-mortality-a general hypothesis, or is it? Ecol. Entomol. 24: 490-495.
|
[74] |
Xin, P., Guo, Q., Li, B., Cheng, S., Yan, J., and Chu, J. (2020). A tailored high-efficiency sample pretreatment method for simultaneous quantification of 10 classes of known endogenous phytohormones. Plant Commun. 1: 100047.
|
[75] |
Ye, M., Liu, M., Erb, M., Glauser, G., Zhang, J., Li, X., and Sun, X. (2021). Indole primes defence signalling and increases herbivore resistance in tea plants. Plant Cell Environ. 44: 1165-1177.
|
[76] |
Yu, C.W., Lin, Y.T., and Li, H.M. (2020). Increased ratio of galactolipid MGDG: DGDG induces jasmonic acid overproduction and changes chloroplast shape. New Phytol. 228: 1327-1335.
|
[77] |
Yu, H., Zhang, Y., Xie, Y., Wang, Y., Duan, L., Zhang, M., and Li, Z. (2017). Ethephon improved drought tolerance in maize seedlings by modulating cuticular wax biosynthesis and membrane stability. J. Plant Physiol. 214: 123-133.
|
[78] |
Zhang, X., van Doan, C., Arce, C.C.M., Hu, L., Gruenig, S., Parisod, C., Hibbard, B.E., Herve, M.R., Nielson, C., Robert, C.A.M., et al. (2019). Plant defense resistance in natural enemies of a specialist insect herbivore. Proc. Natl. Acad. Sci. U.S.A. 116: 23174-23181.
|
[79] |
Zhao, Y., Chan, Z., Gao, J., Xing, L., Cao, M., Yu, C., Hu, Y., You, J., Shi, H., Zhu, Y., et al. (2016). ABA receptor PYL9 promotes drought resistance and leaf senescence. Proc. Natl. Acad. Sci. U.S.A. 113: 1949-1954.
|
[80] |
Zheng, J., He, C., Qin, Y., Lin, G., Park, W. D., Sun, M., Li, J., Lu, X. D., Zhang, C. Y., Yeh, C. T., et al. (2019). Co-expression analysis aids in the identification of genes in the cuticular wax pathway in maize. Plant J. 97: 530-542.
|
/
〈 | 〉 |