Post-transcriptional regulation of grain weight and shape by the RBP-A-J-K complex in rice
Ding Ren, Hui Liu, Xuejun Sun, Fan Zhang, Ling Jiang, Ying Wang, Ning Jiang, Peiwen Yan, Jinhao Cui, Jinshui Yang, Zhikang Li, Pingli Lu, Xiaojin Luo
Post-transcriptional regulation of grain weight and shape by the RBP-A-J-K complex in rice
RNA-binding proteins (RBPs) are components of the post-transcriptional regulatory system, but their regulatory effects on complex traits remain unknown. Using an integrated strategy involving map-based cloning, functional characterizations, and transcriptomic and population genomic analyses, we revealed that RBP-K (LOC_Os08g23120), RBP-A (LOC_Os11g41890), and RBP-J (LOC_Os10g33230) encode proteins that form an RBP-A-J-K complex that negatively regulates rice yield-related traits. Examinations of the RBP-A-J-K complex indicated RBP-K functions as a relatively non-specific RBP chaperone that enables RBP-A and RBP-J to function normally. Additionally, RBP-J most likely affects GA pathways, resulting in considerable increases in grain and panicle lengths, but decreases in grain width and thickness. In contrast, RBP-A negatively regulates the expression of genes most likely involved in auxin-regulated pathways controlling cell wall elongation and carbohydrate transport, with substantial effects on the rice grain filling process as well as grain length and weight. Evolutionarily, RBP-K is relatively ancient and highly conserved, whereas RBP-J and RBP-A are more diverse. Thus, the RBP-A-J-K complex may represent a typical functional model for many RBPs and protein complexes that function at transcriptional and post-transcriptional levels in plants and animals for increased functional consistency, efficiency, and versatility, as well as increased evolutionary potential. Our results clearly demonstrate the importance of RBP-mediated post-transcriptional regulation for the diversity of complex traits. Furthermore, rice grain yield and quality may be enhanced by introducing various complete or partial loss-of-function mutations to specific RBP genes using clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein 9 technology and by exploiting desirable natural trigenic allelic combinations at the loci encoding the components of the RBP-A-J-K complex through marker-assisted selection.
GL11 / grain weight and shape / post-transcriptional regulation / RNA-binding proteins
[1] |
Alba, M.M., and Pages, M. (1998). Plant proteins containing the RNA-recognition motif. Trends Plant Sci. 3: 15-21.
|
[2] |
Alexandrov, N., Tai, S.S., Wang, W.S., Mansueto, L., Palis, K., Fuentes, R.R., Ulat, V.J., Chebotarov, D., Zhang, G.Y., Li, Z.K., et al. (2015). SNP-Seek database of SNPs derived from 3000 rice genomes. Nucleic Acids Res. 43: D1023-D1027.
|
[3] |
Che, J., Yamaji, N., Shen, R.F., and Ma, J.F. (2016). An Al-inducible expansin gene, OsEXPA10 is involved in root cell elongation of rice. Plant J. 88: 132-142.
|
[4] |
Che, R., Tong, H., Shi, B., Liu, Y., Fang, S., Liu, D., Xiao, Y., Hu, B., Liu, L., Wang, H., et al. (2015). Control of grain size and rice yield by GL2-mediated brassinosteroid responses. Nat. Plants 2: 15195.
|
[5] |
Choi, B.S., Kim, Y.J., Markkandan, K., Koo, Y.J., Song, J.T., and Seo, H.S. (2018). GW2 functions as an E3 ubiquitin ligase for rice expansin-like 1. Int. J. Mol. Sci. 19: 1904.
|
[6] |
Ciuzan, O., Hancock, J., Pamfil, D., Wilson, I., and Ladomery, M. (2015). The evolutionarily conserved multifunctional glycine-rich RNA-binding proteins play key roles in development and stress adaptation. Physiol. Plant. 153: 1-11.
|
[7] |
Cosgrove, D.J. (2015). Plant expansins: Diversity and interactions with plant cell walls. Curr. Opin. Plant Biol. 25: 162-172.
|
[8] |
Crofts, A.J., Crofts, N., Whitelegge, J.P., and Okita, T.W. (2010). Isolation and identification of cytoskeleton-associated prolamine mRNA binding proteins from developing rice seeds. Planta 231: 1261-1276.
|
[9] |
Doroshenk, K.A., Crofts, A.J., Morris, R.T., Wyrick, J.J., and Okita, T.W. (2009). Proteomic analysis of cytoskeleton-associated RNA binding proteins in developing rice seed. J. Proteome Res. 8: 4641-4653.
|
[10] |
Duan, P., Rao, Y., Zeng, D., Yang, Y., Xu, R., Zhang, B., Dong, G., Qian, Q., and Li, Y. (2014). SMALL GRAIN 1, which encodes a mitogen-activated protein kinase kinase 4, influences grain size in rice. Plant J. 77: 547-557.
|
[11] |
Fan, C., Xing, Y., Mao, H., Lu, T., Han, B., Xu, C., Li, X., and Zhang, Q. (2006). GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor. Appl. Genet. 112: 1164-1171.
|
[12] |
Fang, N., Xu, R., Huang, L., Zhang, B., Duan, P., Li, N., Luo, Y., and Li, Y. (2016). SMALL GRAIN 11 controls grain size, grain number and grain yield in rice. Rice 9: 64.
|
[13] |
Fendrych, M., Leung, J., and Friml, J. (2016). TIR1/AFB-Aux/IAA auxin perception mediates rapid cell wall acidification and growth of Arabidopsis hypocotyls. eLife 5: e19048.
|
[14] |
Feng, Z., Wu, C., Wang, C., Roh, J., Zhang, L., Chen, J., Zhang, S., Zhang, H., Yang, C., Hu, J., et al. (2016). SLG controls grain size and leaf angle by modulating brassinosteroid homeostasis in rice. J. Exp. Bot. 67: 4241-4253.
|
[15] |
Fusaro, A., Mangeon, A., Junqueira, R.M., Rocha, C.A.B., Coutinho, T.C., Margis, R., and Sachetto-Martins, G. (2001). Classification, expression pattern and comparative analysis of sugarcane expressed sequence's tags (ESTs) encoding glycine-rich proteins (GRPs). Genet. Mol. Biol. 24: 263-273.
|
[16] |
Hemalatha, N., Rajesh, M.K., and Narayanan, N.K. (2011). Genome-wide analysis and identification of genes related to expansin gene family in indica rice. Int. J. Bioinform. Res. Appl. 7: 162-167.
|
[17] |
Hong, F., Attia, K., Wei, C., Li, K., He, G., Su, W., Zhang, Q., Qian, X., and Yang, J. (2007). Overexpression of the rFCA RNA recognition motif affects morphologies modifications in rice (Oryza sativa L.). Biosci. Rep. 27: 225-234.
|
[18] |
Hu, J., Wang, Y., Fang, Y., Zeng, L., Xu, J., Yu, H., Shi, Z., Pan, J., Zhang, D., Kang, S., et al. (2015). A rare allele of GS2 enhances grain size and grain yield in rice. Mol. Plant 8: 1455-1465.
|
[19] |
Hu, Z.J., He, H.H., Zhang, S.Y., Sun, F., Xin, X.Y., Wang, W.X., Qian, X., Yang, J.S., and Luo, X.J. (2012). A kelch motif-containing serine/threonine protein phosphatase determines the large grain QTL trait in rice. J. Integr. Plant Biol. 54: 979-990.
|
[20] |
Hu, Z., Lu, S.J., Wang, M.J., He, H., Sun, L., Wang, H., Liu, X.H., Jiang, L., Sun, J.L., Xin, X., et al. (2018). A novel QTL qTGW3 encodes the GSK3/SHAGGY-like kinase OsGSK5/OsSK41 that interacts with OsARF4 to negatively regulate grain size and weight in rice. Mol. Plant 11: 736-749.
|
[21] |
Ishimaru, K., Hirotsu, N., Madoka, Y., Murakami, N., Hara, N., Onodera, H., Kashiwagi, T., Ujiie, K., Shimizu, B., Onishi, A., et al. (2013). Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nat. Genet. 45: 707-711.
|
[22] |
Ivanyi-Nagy, R., Davidovic, L., Khandjian, E.W., and Darlix, J.L. (2005). Disordered RNA chaperone proteins: From functions to disease. Cell. Mol. Life Sci. 62: 1409-1417.
|
[23] |
Jadamba, C., Kang, K., Paek, N.C., Lee, S.I., and Yoo, S.C. (2020). Overexpression of rice Expansin7 (Osexpa7) confers enhanced tolerance to salt stress in rice. Int. J. Mol. Sci. 21: 454.
|
[24] |
Jang, Y.H., Park, H.Y., Kim, S.K., Lee, J.H., Suh, M.C., Chung, Y.S., Paek, K.H., and Kim, J.K. (2009). Survey of rice proteins interacting with OsFCA and OsFY proteins which are homologous to the Arabidopsis flowering time proteins, FCA and FY. Plant Cell Physiol. 50: 1479-1492.
|
[25] |
Jiang, Y., Bao, L., Jeong, S.Y., Kim, S.K., Xu, C., Li, X., and Zhang, Q. (2012). XIAO is involved in the control of organ size by contributing to the regulation of signaling and homeostasis of brassinosteroids and cell cycling in rice. Plant J. 70: 398-408.
|
[26] |
Jung, J.H., Seo, P.J., Ahn, J.H., and Park, C.M. (2012). Arabidopsis RNA-binding protein FCA regulates microRNA172 processing in thermosensory flowering. J. Biol. Chem. 287: 16007-16016.
|
[27] |
Kawahara, Y., de la Bastide, M., Hamilton, J.P., Kanamori, H., McCombie, W.R., Ouyang, S., Schwartz, D.C., Tanaka, T., Wu, J.Z., Zhou, S.G., et al. (2013). Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice 6: 4.
|
[28] |
Kotake, T., Nakagawa, N., Takeda, K., and Sakurai, N. (2000). Auxin-induced elongation growth and expressions of cell wall-bound exo-and endo-beta-glucanases in barley coleoptiles. Plant Cell Physiol. 41: 1272-1278.
|
[29] |
Krishnamurthy, P., Kim, J.A., Jeong, M.J., Kang, C.H., and Lee, S.I. (2015). Defining the RNA-binding glycine-rich (RBG) gene superfamily: New insights into nomenclature, phylogeny, and evolutionary trends obtained by genome-wide comparative analysis of Arabidopsis, Chinese cabbage, rice and maize genomes. Mol. Genet. Genomics 290: 2279-2295.
|
[30] |
Kwak, K.J., Kim, Y.O., and Kang, H.S. (2005). Characterization of transgenic Arabidopsis plants overexpressing GR-RBP4 under high salinity, dehydration, or cold stress. J. Exp. Bot. 56: 3007-3016.
|
[31] |
Lee, K., and Kang, H. (2016). Emerging roles of RNA-binding proteins in plant growth, development, and stress responses. Mol. Cells 39: 179-185.
|
[32] |
Li, N., and Li, Y. (2016). Signaling pathways of seed size control in plants. Curr. Opin. Plant Biol. 33: 23-32.
|
[33] |
Liu, Y.H., Zhu, Y., Xu, X.D., Sun, F., Yang, J.S., Cao, L.M., and Luo, X.J. (2019). OstMAPKKK5, a truncated mitogen-activated protein kinase kinase kinase 5, positively regulates plant height and yield in rice. Crop J. 7: 707-714.
|
[34] |
Lorkovic, Z.J. (2009). Role of plant RNA-binding proteins in development, stress response and genome organization. Trends Plant Sci. 14: 229-236.
|
[35] |
Lorkovic, Z.J., and Barta, A. (2002). Genome analysis: RNA recognition motif (RRM) and K homology (KH) domain RNA-binding proteins from the flowering plant Arabidopsis thaliana. Nucleic Acids Res. 30: 623-635.
|
[36] |
Luo, X.J., Fu, Y.C., Zhang, P.J., Wu, S., Tian, F., Liu, J.Y., Zhu, Z.F., Yang, J.S., and Sun, C.Q. (2009). Additive and over-dominant effects resulting from epistatic loci are the primary genetic basis of heterosis in rice. J. Integr. Plant Biol. 51: 393-408.
|
[37] |
Luo, X.J., Wu, S., Tian, F., Xin, X.Y., Za, X.J., Dong, X.X., Fu, Y.C., Wang, X.K., Yang, J.S., and Sun, C.Q. (2011). Identification heterotic loci associated with yield-related traits derived from Chinese common wild rice (Oryza rufipogon Griff.). Plant Sci. 181: 14-22.
|
[38] |
Ma, F.Y., Zhang, F., Zhu, Y., Lan, D.Y., Yan, P.W., Wang, Y., Hu, Z.j, Zhang, X.W., Hu, J., Niu, F.A., et al. (2023). Auxin signaling module OsSK41-OsIAA10-OsARF regulates grain yield traits in rice. J. Integr. Plant Biol. 65: 1753-1766.
|
[39] |
Macknight, R., Bancroft, I., Page, T., Lister, C., Schmidt, R., Love, K., Westphal, L., Murphy, G., Sherson, S., Cobbett, C., et al. (1997). FCA, a gene controlling flowering time in Arabidopsis, encodes a protein containing RNA-binding domains. Cell 89: 737-745.
|
[40] |
Mangeon, A., Pardal, R., Menezes-Salgueiro, A.D., Duarte, G.L., de Seixas, R., Cruz, F.P., Cardeal, V., Magioli, C., Ricachenevsky, F.K., Margis, R., et al. (2016). AtGRP3 is implicated in root size and aluminum response pathways in Arabidopsis. PLoS ONE 11: e0150583.
|
[41] |
Mayfield, J.A., and Preuss, D. (2000). Rapid initiation of Arabidopsis pollination requires the oleosin-domain protein GRP17. Nat. Cell Biol. 2: 128-130.
|
[42] |
Morris, R.T., Doroshenk, K.A., Crofts, A.J., Lewis, N., Okita, T.W., and Wyrick, J.J. (2011). RiceRBP: A database of experimentally identified RNA-binding proteins in Oryza sativa L. Plant Sci. 180: 204-211.
|
[43] |
Ortega-Amaro, M.A., Rodriguez-Hernandez, A.A., Rodriguez-Kessler, M., Hernandez-Lucero, E., Rosales-Mendoza, S., Ibanez-Salazar, A., Delgado-Sanchez, P., and Jimenez-Bremont, J.F. (2015). Overexpression of AtGRDP2, a novel glycine-rich domain protein, accelerates plant growth and improves stress tolerance. Front. Plant Sci. 5: 782.
|
[44] |
Paterson, A.H., Saranga, Y., Menz, M., Jiang, C.X., and Wright, R.J. (2003). QTL analysis of genotype x environment interactions affecting cotton fiber quality. Theor. Appl. Genet. 106: 384-396.
|
[45] |
Qi, P., Lin, Y.S., Song, X.J., Shen, J.B., Huang, W., Shan, J.X., Zhu, M.Z., Jiang, L., Gao, J.P., and Lin, H.X. (2012). The novel quantitative trait locus GL3.1 controls rice grain size and yield by regulating Cyclin-T1;3. Cell Res. 22: 1666-1680.
|
[46] |
Rodriguez-Hernandez, A.A., Ortega-Amaro, M.A., Delgado-Sanchez, P., Salinas, J., and Jimenez-Bremont, J.F. (2014). AtGRDP1 gene encoding a glycine-rich domain protein is involved in germination and responds to ABA signalling. Plant Mol. Biol. Rep. 32: 1187-1202.
|
[47] |
Ryser, U., Schorderet, M., Zhao, G.F., Studer, D., Ruel, K., Hauf, G., and Keller, B. (1997). Structural cell-wall proteins in protoxylem development: Evidence for a repair process mediated by a glycine-rich protein. Plant J. 12: 97-111.
|
[48] |
Schmal, C., Reimann, P., and Staiger, D. (2013). A circadian clock-regulated toggle switch explains AtGRP7 and AtGRP8 oscillations in Arabidopsis thaliana. PLoS Comput. Biol. 9: e1002986.
|
[49] |
Schmidt, F., Marnef, A., Cheung, M.K., Wilson, I., Hancock, J., Staiger, D., and Ladomery, M. (2010). A proteomic analysis of oligo(dT)-bound mRNP containing oxidative stress-induced Arabidopsis thaliana RNA-binding proteins ATGRP7 and ATGRP8. Mol. Biol. Rep. 37: 839-845.
|
[50] |
Schoenaers, S., Balcerowicz, D., Breen, G., Hill, K., Zdanio, M., Mouille, G., Holman, T.J., Oh, J., Wilson, M.H., Nikonorova, N., et al. (2018). The Auxin-regulated CrRLK1L kinase ERULUS controls cell wall composition during root hair tip growth. Curr. Biol. 28: 722-732.e6.
|
[51] |
Shinozuka, H., Hisano, H., Yoneyama, S., Shimamoto, Y., Jones, E.S., Forster, J.W., Yamada, T., and Kanazawa, A. (2006). Gene expression and genetic mapping analyses of a perennial ryegrass glycine-rich RNA-binding protein gene suggest a role in cold adaptation. Mol. Genet. Genomics 275: 399-408.
|
[52] |
Sonmez, C., Baurle, I., Magusin, A., Dreos, R., Laubinger, S., Weigel, D., and Dean, C. (2011). RNA 3′ processing functions of Arabidopsis FCA and FPA limit intergenic transcription. Proc. Natl. Acad. Sci. U.S.A. 108: 8508-8513.
|
[53] |
Streitner, C., Danisman, S., Wehrle, F., Schoning, J.C., Alfano, J.R., and Staiger, D. (2008). The small glycine-rich RNA binding protein AtGRP7 promotes floral transition in Arabidopsis thaliana. Plant J. 56: 239-250.
|
[54] |
Sun, L., Yang, D.L., Kong, Y., Chen, Y., Li, X.Z., Zeng, L.J., Li, Q., Wang, E.T., and He, Z.H. (2014). Sugar homeostasis mediated by cell wall invertase GRAIN INCOMPLETE FILLING 1 (GIF1) plays a role in pre-existing and induced defence in rice. Mol. Plant Pathol. 15: 161-173.
|
[55] |
Tan, J., Wang, M., Shi, Z., and Miao, X. (2018). OsEXPA10 mediates the balance between growth and resistance to biotic stress in rice. Plant Cell Rep. 37: 993-1002.
|
[56] |
Tan, Y.X., Qin, Y., Li, Y.L., Li, M.J., and Ma, F.W. (2014). Overexpression of MpGR-RBP1, a glycine-rich RNA-binding protein gene from Malus prunifolia (Willd.) Borkh., confers salt stress tolerance and protects against oxidative stress in Arabidopsis. Plant Cell Tiss. Org. 119: 635-646.
|
[57] |
Tian, T., Liu, Y., Yan, H., You, Q., Yi, X., Du, Z., Xu, W., and Su, Z. (2017). agriGO v2.0: A GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Res. 45: W122-W129.
|
[58] |
Tucker, M.R., Lou, H., Aubert, M.K., Wilkinson, L.G., Little, A., Houston, K., Pinto, S.C., and Shirley, N.J. (2018). Exploring the role of cell wall-related genes and polysaccharides during plant development. Plants 7: 42.
|
[59] |
Wang, C.C., Yu, H., Huang, J., Wang, W.S., Faruquee, M., Zhang, F., Zhao, X.Q., Fu, B.Y., Chen, K., Zhang, H.L., et al. (2020). Towards a deeper haplotype mining of complex traits in rice with RFGB v2.0. Plant Biotechnol. J. 18: 14-16.
|
[60] |
Wang, E., Wang, J., Zhu, X., Hao, W., Wang, L., Li, Q., Zhang, L., He, W., Lu, B., Lin, H., et al. (2008). Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nat. Genet. 40: 1370-1374.
|
[61] |
Wang, E., Xu, X., Zhang, L., Zhang, H., Lin, L., Wang, Q., Li, Q., Ge, S., Lu, B.R., Wang, W., et al. (2010). Duplication and independent selection of cell-wall invertase genes GIF1 and OsCIN1 during rice evolution and domestication. BMC Evol. Biol. 10: 108.
|
[62] |
Wang, L., Shang, H., Liu, Y., Zheng, M., Wu, R., Phillips, J., Bartels, D., and Deng, X. (2009). A role for a cell wall localized glycine-rich protein in dehydration and rehydration of the resurrection plant Boea hygrometrica. Plant Biol. 11: 837-848.
|
[63] |
Wang, W., Mauleon, R., Hu, Z., Chebotarov, D., Tai, S., Wu, Z., Li, M., Zheng, T., Fuentes, R.R., Zhang, F., et al. (2018). Genomic variation in 3,010 diverse accessions of Asian cultivated rice. Nature 557: 43-49.
|
[64] |
Wang, Y., Xiong, G., Hu, J., Jiang, L., Yu, H., Xu, J., Fang, Y., Zeng, L., Xu, E., Xu, J., et al. (2015). Copy number variation at the GL7 locus contributes to grain size diversity in rice. Nat. Genet. 47: 944-948.
|
[65] |
Wing, R.A., Purugganan, M.D., and Zhang, Q. (2018). The rice genome revolution: From an ancient grain to Green Super Rice. Nat. Rev. Genet. 19: 505-517.
|
[66] |
Xu, F., Fang, J., Ou, S., Gao, S., Zhang, F., Du, L., Xiao, Y., Wang, H., Sun, X., Chu, J., et al. (2015). Variations in CYP78A13 coding region influence grain size and yield in rice. Plant Cell Environ. 38: 800-811.
|
[67] |
Yang, Y., Crofts, A.J., Crofts, N., and Okita, T.W. (2014). Multiple RNA binding protein complexes interact with the rice prolamine RNA cis-localization zipcode sequences. Plant Physiol. 164: 1271-1282.
|
[68] |
Zhang, Y., Su, J., Duan, S., Ao, Y., Dai, J., Liu, J., Wang, P., Li, Y., Liu, B., Feng, D., et al. (2011). A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes. Plant Methods 7: 30.
|
/
〈 | 〉 |