Striking a growth-defense balance: Stress regulators that function in maize development

Shiyi Xie, Hongbing Luo, Wei Huang, Weiwei Jin, Zhaobin Dong

PDF
Journal of Integrative Plant Biology ›› 2024, Vol. 66 ›› Issue (3) : 424-442. DOI: 10.1111/jipb.13570
Invited Expert Review

Striking a growth-defense balance: Stress regulators that function in maize development

Author information +
History +

Abstract

Maize (Zea mays) cultivation is strongly affected by both abiotic and biotic stress, leading to reduced growth and productivity. It has recently become clear that regulators of plant stress responses, including the phytohormones abscisic acid (ABA), ethylene (ET), and jasmonic acid (JA), together with reactive oxygen species (ROS), shape plant growth and development. Beyond their well established functions in stress responses, these molecules play crucial roles in balancing growth and defense, which must be finely tuned to achieve high yields in crops while maintaining some level of defense. In this review, we provide an in-depth analysis of recent research on the developmental functions of stress regulators, focusing specifically on maize. By unraveling the contributions of these regulators to maize development, we present new avenues for enhancing maize cultivation and growth while highlighting the potential risks associated with manipulating stress regulators to enhance grain yields in the face of environmental challenges.

Keywords

stress regulators / maize development / ABA / ET / JA / ROS

Cite this article

Download citation ▾
Shiyi Xie, Hongbing Luo, Wei Huang, Weiwei Jin, Zhaobin Dong. Striking a growth-defense balance: Stress regulators that function in maize development. Journal of Integrative Plant Biology, 2024, 66(3): 424‒442 https://doi.org/10.1111/jipb.13570

References

[1]
Achard,P., Baghour, M., Chapple,A., Hedden,P., Van Der Straeten, D., Genschik,P., Moritz,T., and Harberd, N.P. (2007). The plant stress hormone ethylene controls floral transition via DELLA-dependent regulation of floral meristem-identity genes. Proc. Natl. Acad. Sci. U.S.A. 104: 6484-6489.
[2]
Achard,P., Cheng,H., De Grauwe,L., Decat,J., Schoutteten, H., Moritz,T., Van Der Straeten,D., Peng, J., and Harberd,N.P. (2006). Integration of plant responses to environmentally activated phytohormonal signals. Science 311: 91-94.
[3]
Acosta,I.F., Laparra, H., Romero,S.P., Schmelz,E., Hamberg, M., Mottinger,J.P., Moreno,M.A., and Dellaporta, S.L. (2009). tasselseed1 is a lipoxygenase affecting jasmonic acid signaling in sex determination of maize. Science 323: 262-265.
[4]
Adams,D.O., and Yang, S.F. (1977). Methionine metabolism in apple tissue: Implication of S-Adenosylmethionine as an intermediate in the conversion of methionine to ethylene. Plant Physiol. 60: 892-896.
[5]
Adams,D.O., and Yang, S.F. (1979). Ethylene biosynthesis: Identification of 1-aminocyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene. Proc. Natl. Acad. Sci. U.S.A. 76: 170-174.
[6]
Aguilar-Martínez,J.A., Poza-Carrión,C., and Cubas, P. (2007). Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds. Plant Cell 19: 458-472.
[7]
Alonso,J.M., Hirayama, T., Roman,G., Nourizadeh,S., and Ecker, J.R. (1999). EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science 284: 2148-2152.
[8]
Anfang,M., and Shani, E. (2021). Transport mechanisms of plant hormones. Curr. Opin. Plant Biol. 63: 102055.
[9]
Baba,T., and Yamazaki, K. (1996). Effects of phase transition on the development of lateral buds in maize. Crop Sci. 36: 1574-1579.
[10]
Bailly,C. (2019). The signalling role of ROS in the regulation of seed germination and dormancy. Biochem. J. 476: 3019-3032.
[11]
Bailly,C., El-Maarouf-Bouteau, H., and Corbineau,F. (2008). From intracellular signaling networks to cell death: the dual role of reactive oxygen species in seed physiology. C. R. Biol. 331: 806-814.
[12]
Balcerowicz,M., Shetty, K.N., and Jones,A.M. (2021). Fluorescent biosensors illuminating plant hormone research. Plant Physiol. 187: 590-602.
[13]
Bayer,P.E., Golicz, A.A., Scheben,A., Batley,J., and Edwards, D. (2020). Plant pan-genomes are the new reference. Nat. Plants 6: 914-920.
[14]
Bell,E., Creelman, R.A., and Mullet,J.E. (1995). A chloroplast lipoxygenase is required for wound-induced jasmonic acid accumulation in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 92: 8675-8679.
[15]
Bensen,R.J., Johal,G.S., Crane,V.C., Tossberg, J.T., Schnable,P.S., Meeley,R.B., and Briggs, S.P. (1995). Cloning and characterization of the maize An1 gene. Plant Cell 7: 75-84.
[16]
Best,N.B., Hartwig, T., Budka,J., Fujioka,S., Johal,G., Schulz,B., and Dilkes, B.P. (2016). nana plant2 encodes a maize ortholog of the Arabidopsis brassinosteroid biosynthesis gene DWARF1, identifying developmental interactions between brassinosteroids and gibberellins. Plant Physiol. 171: 2633-2647.
[17]
Birdseye,D., de Boer, L.A., Bai,H., Zhou,P., Shen,Z., Schmelz,E.A., Springer,N.M., and Briggs, S.P. (2021). Plant height heterosis is quantitatively associated with expression levels of plastid ribosomal proteins. Proc. Natl. Acad. Sci. U.S.A. 118: e2109332118.
[18]
Boualem,A., Berthet, S., Devani,R.S., Camps,C., Fleurier, S., Morin,H., Troadec,C., Giovinazzo, N., Sari,N., Dogimont,C., et al. (2022). Ethylene plays a dual role in sex determination and fruit shape in cucurbits. Curr. Biol. 32: 2390-2401.
[19]
Boualem,A., Fergany, M., Fernandez,R., Troadec,C., Martin, A., Morin,H., Sari,M., Collin, F., Flowers,J.M., Pitrat,M., et al. (2008). A conserved mutation in an ethylene biosynthesis enzyme leads to andromonoecy in melons. Science 321: 836-838.
[20]
Boualem,A., Troadec, C., Camps,C., Lemhemdi,A., Morin,H., Sari,M., Fraenkel-Zagouri, R., Kovalski,I., Dogimont,C., Perl-Treves, R., et al. (2015). A cucurbit androecy gene reveals how unisexual flowers develop and dioecy emerges. Science 350: 688-691.
[21]
Byers,R.E., Baker,L.R., Sell,H.M., Herner, R.C., and Dilley,D.R. (1972). Ethylene: A natural regulator of sex expression of Cucumis melo L. Proc. Natl. Acad. Sci. U.S.A. 69: 717-720.
[22]
Calderon-Urrea,A., and Dellaporta, S.L. (1999). Cell death and cell protection genes determine the fate of pistils in maize. Development 126: 435-441.
[23]
Campos,M.L., Yoshida, Y., Major,I.T., de Oliveira Ferreira,D., Weraduwage,S.M., Froehlich, J.E., Johnson,B.F., Kramer,D.M., Jander, G., Sharkey,T.D., et al. (2016). Rewiring of jasmonate and phytochrome B signalling uncouples plant growth-defense tradeoffs. Nat. Commun. 7: 12570.
[24]
Cao,Y., Zeng,H., Ku,L., Ren, Z., Han,Y., Su,H., Dou,D., Liu,H., Dong, Y., Zhu,F., et al. (2020). ZmIBH1-1 regulates plant architecture in maize. J. Exp. Bot. 71: 2943-2955.
[25]
Cao,Y., Zhong,Z., Wang,H., and Shen, R. (2022). Leaf angle: A target of genetic improvement in cereal crops tailored for high-density planting. Plant Biotechnol. J. 20: 426-436.
[26]
Chang,C., Kwok,S.F., Bleecker,A.B., and Meyerowitz,E.M. (1993). Arabidopsis ethylene-response gene ETR1: Similarity of product to two-component regulators. Science 262: 539-544.
[27]
Chaubal,R., Anderson, J.R., Trimnell,M.R., Fox,T.W., Albertsen, M.C., and Bedinger,P. (2003). The transformation of anthers in the msca1 mutant of maize. Planta 216: 778-788.
[28]
Chen,C., Zhang,Y., Cai,J., Qiu, Y., Li,L., Gao,C., Gao,Y., Ke,M., Wu, S., Wei,C., et al. (2023). Multi-copper oxidases SKU5 and SKS1 coordinate cell wall formation using apoplastic redox-based reactions in roots. Plant Physiol. 192: 2243-2260.
[29]
Chen,H., Sun,J., Li,S., Cui, Q., Zhang,H., Xin,F., Wang,H., Lin,T., Gao, D., Wang,S., et al. (2016). An ACC oxidase gene essential for cucumber carpel development. Mol. Plant 9: 1315-1327.
[30]
Chen,X., Zhang,Z., Visser,R.G.G., Vosman,B., and Broekgaarden, C. (2014a). Constitutive overexpression of the pollen specific gene SKS13 in leaves reduces aphid performance on Arabidopsis thaliana. BMC Plant Biol. 14: 217.
[31]
Chen,Y., Hou,M., Liu,L., Wu, S., Shen,Y., Ishiyama,K., Kobayashi, M., McCarty,D.R., and Tan,B. (2014b). The maize DWARF1 encodes a gibberellin 3-oxidase and is dual localized to the nucleus and cytosol. Plant Physiol. 166: 2028-2039.
[32]
Chen,Y., Li,J., Fan,K., Du, Y., Ren,Z., Xu,J., Zheng,J., Liu,Y., Fu, J., Ren,D., et al. (2017). Mutations in the maize zeta-carotene desaturase gene lead to viviparous kernel. PLoS ONE 12: e0174270.
[33]
Chen,Y., Zhang,L., Zhang,H., Chen, L., and Yu,D. (2021). ERF1 delays flowering through direct inhibition of FLOWERING LOCUS T expression in Arabidopsis. J. Integr. Plant Biol. 63: 1712-1723.
[34]
Cheng,W., Endo,A., Zhou,L., Penney, J., Chen,H., Arroyo,A., Leon,P., Nambara,E., Asami, T., Seo,M., et al. (2002). A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. Plant Cell 14: 2723-2743.
[35]
Chini,A., Fonseca, S., Fernández,G., Adie,B., Chico, J.M., Lorenzo,O., García-Casado,G., López-Vidriero,I., Lozano,F.M., Ponce,M.R., et al. (2007). The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448: 666-671.
[36]
Clowes,F.A.L. (2000). Pattern in root meristem development in angiosperms. New Phytol. 146: 83-94.
[37]
Cox,W.J., and Andrade, H.F. (1988). Growth, yield, and yield components of maize as influenced by ethephon. Crop Sci. 28: 536-542.
[38]
Cutler,S.R., Rodriguez, P.L., Finkelstein,R.R., and Abrams,S.R. (2010). Abscisic acid: Emergence of a core signaling network. Annu. Rev. Plant Biol. 61: 651-679.
[39]
Dai,D., Tong,H., Cheng,L., Peng, F., Zhang,T., Qi,W., and Song, R. (2019). Maize Dek33 encodes a pyrimidine reductase in riboflavin biosynthesis that is essential for oil-body formation and ABA biosynthesis during seed development. J. Exp. Bot. 70: 5173-5187.
[40]
Dampanaboina,L., Jiao,Y., Chen,J., Gladman, N., Chopra,R., Burow,G., Hayes,C., Christensen,S.A., Burke,J., Ware,D., et al. (2019). Sorghum MSD3 encodes an ω-3 fatty acid desaturase that increases grain number by reducing jasmonic acid levels. Int. J. Mol. Sci. 20: 5359.
[41]
Danilevskaya,O.N., Meng, X., Selinger,D.A., Deschamps,S., Hermon, P., Vansant,G., Gupta,R., Ananiev, E.V., and Muszynski,M.G. (2008). Involvement of the MADS-box gene ZMM4 in floral induction and inflorescence development in maize. Plant Physiol. 147: 2054-2069.
[42]
Dellaporta,S.L., and Calderon-Urrea, A. (1994). The sex determination process in maize. Science 266: 1501-1505.
[43]
DeLong,A., Calderon-Urrea, A., and Dellaporta,S.L. (1993). Sex determination gene TASSELSEED2 of maize encodes a short-chain alcohol dehydrogenase required for stage-specific floral organ abortion. Cell 74: 757-768.
[44]
Doebley,J. (2004). The genetics of maize evolution. Annu. Rev. Genet. 38: 37-59.
[45]
Doebley,J., Stec,A., and Gustus,C. (1995). teosinte branched1 and the origin of maize: evidence for epistasis and the evolution of dominance. Genetics 141: 333-346.
[46]
Doebley,J., Stec,A., and Hubbard,L. (1997). The evolution of apical dominance in maize. Nature 386: 485-488.
[47]
Dong,X., Xu,X., Miao,J., Li, L., Zhang,D., Mi,X., Liu,C., Tian,X., Melchinger, A.E., and Chen,S. (2013). Fine mapping of qhir1 influencing in vivo haploid induction in maize. Theor. Appl. Genet. 126: 1713-1720.
[48]
Dong,Z., Alexander, M., and Chuck,G. (2019a). Understanding grass domestication through maize mutants. Trends Genet. 35: 118-128.
[49]
Dong,Z., Li,W., Unger-Wallace,E., Yang,J., Vollbrecht, E., and Chuck,G. (2017). Ideal crop plant architecture is mediated by tassels replace upper ears1, a BTB/POZ ankyrin repeat gene directly targeted by TEOSINTE BRANCHED1. Proc. Natl. Acad. Sci. U.S.A. 114: E8656-E8664.
[50]
Dong,Z., Xiao,Y., Govindarajulu,R., Feil,R., Siddoway, M.L., Nielsen,T., Lunn,J.E., Hawkins, J., Whipple,C., and Chuck,G. (2019b). The regulatory landscape of a core maize domestication module controlling bud dormancy and growth repression. Nat. Commun. 10: 3810.
[51]
Duan,Y., Wang,L., Li,X., Wang, W., Wang,J., Liu,X., Zhong,Y., Cao,N., Tong, M., Ge,W., et al. (2022). Arabidopsis SKU5 Similar 11 and 12 play crucial roles in pollen tube integrity, growth and guidance. Plant J. 109: 598-614.
[52]
Earley,E.B., and Slife, F.W. (1969). Effect of ethrel on growth and yield of corn. Agron. J. 61: 821-823.
[53]
Feldman,L. (1994). The maize root. In The maize handbook, M.Freeling, V. Walbot, eds (New York: Springer), pp. 29-37.
[54]
Feng,F., Qi,W., Lv,Y., Yan, S., Xu,L., Yang,W., Yuan,Y., Chen,Y., Zhao, H., and Song,R. (2018). OPAQUE11 is a central hub of the regulatory network for maize endosperm development and nutrient metabolism. Plant Cell 30: 375-396.
[55]
Feng,X., Jia,L., Cai,Y., Guan, H., Zheng,D., Zhang,W., Xiong,H., Zhou,H., Wen, Y., Hu,Y., et al. (2022). ABA-inducible DEEPER ROOTING 1 improves adaptation of maize to water deficiency. Plant Biotechnol. J. 20: 2077-2088.
[56]
Finlayson,S.A. (2007). Arabidopsis TEOSINTE BRANCHED1-LIKE 1 regulates axillary bud outgrowth and is homologous to monocot TEOSINTE BRANCHED1. Plant Cell Physiol. 48: 667-677.
[57]
Flint-Garcia,S.A., Bodnar, A.L., and Scott,M.P. (2009a). Wide variability in kernel composition, seed characteristics, and zein profiles among diverse maize inbreds, landraces, and teosinte. Theor. Appl. Genet. 119: 1129-1142.
[58]
Flint-Garcia,S.A., Buckler, E.S., Tiffin,P., Ersoz,E., and Springer, N.M. (2009b). Heterosis is prevalent for multiple traits in diverse maize germplasm. PLoS ONE. 4: e7433.
[59]
Fonseca,S., Chini,A., Hamberg,M., Adie, B., Porzel,A., Kramell,R., Miersch, O., Wasternack,C., and Solano,R. (2009). (+)-7-iso-Jasmonoyl-L-isoleucine is the endogenous bioactive jasmonate. Nat. Chem. Biol. 5: 344-350.
[60]
Fry,S.C. (1998). Oxidative scission of plant cell wall polysaccharides by ascorbate-induced hydroxyl radicals. Biochem. J. 332: 507-515.
[61]
Fujii,H., Chinnusamy, V., Rodrigues,A., Rubio,S., Antoni, R., Park,S., Cutler,S.R., Sheen,J., Rodriguez,P.L., and Zhu,J. (2009). In vitro reconstitution of an abscisic acid signalling pathway. Nature 462: 660-664.
[62]
Gallavotti,A., Barazesh, S., Malcomber,S., Hall,D., Jackson, D., Schmidt,R.J., and McSteen,P. (2008). sparse inflorescence1 encodes a monocot-specific YUCCA-like gene required for vegetative and reproductive development in maize. Proc. Natl. Acad. Sci. U.S.A. 105: 15196-15201.
[63]
Galli,M., Liu,Q., Moss,B.L., Malcomber, S., Li,W., Gaines,C., Federici, S., Roshkovan,J., Meeley,R., Nemhauser, J.L., et al. (2015). Auxin signaling modules regulate maize inflorescence architecture. Proc. Natl. Acad. Sci. U.S.A. 112: 13372-13377.
[64]
Gallie,D.R., Geisler-Lee, J., Chen,J., and Jolley,B. (2009). Tissue-specific expression of the ethylene biosynthetic machinery regulates root growth in maize. Plant Mol. Biol. 69: 195.
[65]
Gan,L., Wu,H., Wu,D., Zhang, Z., Guo,Z., Yang,N., Xia,K., Zhou,X., Oh, K., Matsuoka,M., et al. (2015). Methyl jasmonate inhibits lamina joint inclination by repressing brassinosteroid biosynthesis and signaling in rice. Plant Sci. 241: 238-245.
[66]
Gao,H., Cui,J., Liu,S., Wang, S., Lian,Y., Bai,Y., Zhu,T., Wu,H., Wang, Y., Yang,S., et al. (2022). Natural variations of ZmSRO1d modulate the trade-off between drought resistance and yield by affecting ZmRBOHC-mediated stomatal ROS production in maize. Mol. Plant 15: 1558-1574.
[67]
Gilles,L.M., Khaled, A., Laffaire,J., Chaignon,S., Gendrot, G., Laplaige,J., Bergès,H., Beydon, G., Bayle,V., Barret,P., et al. (2017). Loss of pollen-specific phospholipase NOT LIKE DAD triggers gynogenesis in maize. EMBO J. 36: 707-717.
[68]
Gladman,N., Jiao,Y., Lee,Y.K., Zhang, L., Chopra,R., Regulski,M., Burow,G., Hayes,C., Christensen, S.A., Dampanaboina,L., et al. (2019). Fertility of pedicellate spikelets in sorghum is controlled by a jasmonic acid regulatory module. Int. J. Mol. Sci. 20: 4951.
[69]
Gómez,J.F., Talle, B., and Wilson,Z.A. (2015). Anther and pollen development: A conserved developmental pathway. J. Integr. Plant Biol. 57: 876-891.
[70]
González-Grandío,E., Pajoro,A., Franco-Zorrilla, J.M., Tarancón,C., Immink,R.G.H., and Cubas, P. (2017). Abscisic acid signaling is controlled by a BRANCHED1/HD-ZIP I cascade in Arabidopsis axillary buds. Proc. Natl. Acad. Sci. U.S.A. 114: E245-E254.
[71]
González-Grandío,E., Poza-Carrión,C., Sorzano, C.O.S., and Cubas,P. (2013). BRANCHED1 promotes axillary bud dormancy in response to shade in Arabidopsis. Plant Cell 25: 834-850.
[72]
González-Guzmán,M., Apostolova,N., Bellés, J.M., Barrero,J.M., Piqueras,P., Ponce,M.R., Micol,J.L., Serrano, R., and Rodríguez,P.L. (2002). The short-chain alcohol dehydrogenase ABA2 catalyzes the conversion of xanthoxin to abscisic aldehyde. Plant Cell 14: 1833-1846.
[73]
Guo,H., and Ecker, J.R. (2003). Plant responses to ethylene gas are mediated by SCFEBF1/EBF2-dependent proteolysis of EIN3 transcription factor. Cell 115: 667-677.
[74]
Guo,H., and York, L.M. (2019). Maize with fewer nodal roots allocates mass to more lateral and deep roots that improve nitrogen uptake and shoot growth. J. Exp. Bot. 70: 5299-5309.
[75]
Guo,M., Rupe,M.A., Wei,J., Winkler, C., Goncalves-Butruille,M., Weers,B.P., Cerwick, S.F., Dieter,J.A., Duncan,K.E., Howard, R.J., et al. (2014). Maize ARGOS1 (ZAR1) transgenic alleles increase hybrid maize yield. J. Exp. Bot. 65: 249-260.
[76]
Habben,J.E., Bao,X., Bate,N.J., DeBruin, J.L., Dolan,D., Hasegawa,D., Helentjaris, T.G., Lafitte,R.H., Lovan,N., Mo,H., et al. (2014). Transgenic alteration of ethylene biosynthesis increases grain yield in maize under field drought-stress conditions. Plant Biotechnol. J. 12: 685-693.
[77]
Hable,W.E., Oishi,K.K., and Schumaker,K.S. (1998). Viviparous-5 encodes phytoene desaturase, an enzyme essential for abscisic acid (ABA) accumulation and seed development in maize. Mol. Gen. Genet. 257: 167-176.
[78]
Hamilton,A.J., Bouzayen, M., and Grierson,D. (1991). Identification of a tomato gene for the ethylene-forming enzyme by expression in yeast. Proc. Natl. Acad. Sci. U.S.A. 88: 7434-7437.
[79]
Han,L., Zhong,W., Qian,J., Jin, M., Tian,P., Zhu,W., Zhang,H., Sun,Y., Feng, J.W., Liu,X., et al. (2023). A multi-omics integrative network map of maize. Nat. Genet. 55: 144-153.
[80]
Hartwig,T., Chuck,G.S., Fujioka,S., Klempien, A., Weizbauer,R., Potluri,D.P.V., Choe,S., Johal,G.S., and Schulz, B. (2011). Brassinosteroid control of sex determination in maize. Proc. Natl. Acad. Sci. U.S.A. 108: 19814-19819.
[81]
Hayward,A.P., Moreno, M.A., Howard,T.R., Hague,J., Nelson, K., Heffelfinger,C., Romero,S., Kausch, A.P., Glauser,G., Acosta,I.F., et al. (2016). Control of sexuality by the sk1-encoded UDP-glycosyltransferase of maize. Sci. Adv. 2: e1600991.
[82]
He,Z., Webster, S., and He,S.Y. (2022). Growth-defense trade-offs in plants. Curr. Biol. 32: R634-R639.
[83]
Hochholdinger,F. (2009). The maize root system: Morphology, anatomy, and genetics. In Handbook of maize: Its biology, J.L.Bennetzen, S.C.Hake, eds (New York: Springer), pp. 145-160.
[84]
Hochholdinger,F., and Hoecker, N. (2007). Towards the molecular basis of heterosis. Trends Plant Sci. 12: 427-432.
[85]
Hochholdinger,F., Wen, T., Zimmermann,R., Chimot-Marolle,P., Da Costa, E., Silva,O., Bruce,W., Lamkey, K.R., Wienand,U., and Schnable,P.S. (2008). The maize (Zea mays L.) roothairless3 gene encodes a putative GPI-anchored, monocot-specific, COBRA-like protein that significantly affects grain yield. Plant J. 54: 888-898.
[86]
Hochholdinger,F., Yu, P., and Marcon,C. (2018). Genetic control of root system development in maize. Trends Plant Sci. 23: 79-88.
[87]
Hou,S., and Tsuda, K. (2022). Salicylic acid and jasmonic acid crosstalk in plant immunity. Essays Biochem. 66: 647-656.
[88]
Hu,L., Liang,W., Yin,C., Cui, X., Zong,J., Wang,X., Hu,J., and Zhang,D. (2011). Rice MADS3 regulates ROS homeostasis during late anther development. Plant Cell 23: 515-533.
[89]
Hua,J., Chang,C., Sun,Q., and Meyerowitz, E.M. (1995). Ethylene insensitivity conferred by Arabidopsis ERS gene. Science 269: 1712-1714.
[90]
Hua,J., Sakai,H., Nourizadeh,S., Chen,Q.G., Bleecker, A.B., Ecker,J.R., and Meyerowitz,E.M. (1998). EIN4 and ERS2 are members of the putative ethylene receptor gene family in Arabidopsis. Plant Cell 10: 1321-1332.
[91]
Hubbard,L., McSteen, P., Doebley,J., and Hake,S. (2002). Expression patterns and mutant phenotype of teosinte branched1 correlate with growth suppression in maize and teosinte. Genetics 162: 1927-1935.
[92]
Hunter,C.T., Saunders, J.W., Magallanes-Lundback,M., Christensen,S.A., Willett,D., Stinard, P.S., Li,Q., Lee,K., DellaPenna, D., and Koch,K.E. (2018). Maize w3 disrupts homogentisate solanesyl transferase (ZmHst) and reveals a plastoquinone-9 independent path for phytoene desaturation and tocopherol accumulation in kernels. Plant J. 93: 799-813.
[93]
Huot,B., Yao,J., Montgomery,B.L., and He,S.Y. (2014). Growth-defense tradeoffs in plants: a balancing act to optimize fitness. Mol. Plant 7: 1267-1287.
[94]
Hyun,Y., Choi,S., Hwang,H., Yu, J., Nam,S., Ko,J., Park,J., Seo,Y.S., Kim, E.Y., Ryu,S.B., et al. (2008). Cooperation and functional diversification of two closely related galactolipase genes for jasmonate biosynthesis. Dev. Cell 14: 183-192.
[95]
IPPC Secretariat (2021). Scientific review of the impact of climate change on plant pests: A global challenge to prevent and mitigate plant pest risks in agriculture, forestry and ecosystems. Rome: FAO on behalf of the IPPC Secretariat.
[96]
Ishiguro,S., Kawai-Oda, A., Ueda,J., Nishida,I., and Okada, K. (2001). The DEFECTIVE IN ANTHER DEHISCENCE1 gene encodes a novel phospholipase A1 catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehiscence, and flower opening in Arabidopsis. Plant Cell 13: 2191-2209.
[97]
Iwahori,S., Lyons,J.M., and Smith,O.E. (1970). Sex expression in cucumber plants as affected by 2-chloroethylphosphonic acid, ethylene, and growth regulators. Plant Physiol. 46: 412-415.
[98]
Jackson,M.B., Drew,M.C., and Giffard,S.C. (1981). Effects of applying ethylene to the root system of Zea mays on growth and nutrient concentration in relation to flooding tolerance. Physiol. Plantarum. 52: 23-28.
[99]
Jia,H., Li,M., Li,W., Liu, L., Jian,Y., Yang,Z., Shen,X., Ning,Q., Du, Y., Zhao,R., et al. (2020). A serine/threonine protein kinase encoding gene KERNEL NUMBER PER ROW6 regulates maize grain yield. Nat. Commun. 11: 988.
[100]
Jiang,C., Sun,J., Li,R., Yan, S., Chen,W., Guo,L., Qin,G., Wang,P., Luo, C., Huang,W., et al. (2022). A reactive oxygen species burst causes haploid induction in maize. Mol. Plant 15: 943-955.
[101]
Jiao,Y., Lee,Y.K., Gladman,N., Chopra, R., Christensen,S.A., Regulski,M., Burow,G., Hayes,C., Burke, J., Ware,D., et al. (2018). MSD1 regulates pedicellate spikelet fertility in sorghum through the jasmonic acid pathway. Nat. Commun. 9: 822.
[102]
Jiao,Y., Peluso, P., Shi,J., Liang,T., Stitzer, M.C., Wang,B., Campbell,M.S., Stein,J.C., Wei,X., Chin, C., et al. (2017). Improved maize reference genome with single-molecule technologies. Nature 546: 524-527.
[103]
Jung,C., and Müller, A.E. (2009). Flowering time control and applications in plant breeding. Trends Plant Sci. 14: 563-573.
[104]
Karasov,T.L., Chae,E., Herman,J.J., and Bergelson, J. (2017). Mechanisms to mitigate the trade-off between growth and defense. Plant Cell 29: 666-680.
[105]
Kaya,H., Nakajima, R., Iwano,M., Kanaoka,M.M., Kimura, S., Takeda,S., Kawarazaki,T., Senzaki, E., Hamamura,Y., Higashiyama,T., et al. (2014). Ca2+-activated reactive oxygen species production by Arabidopsis RbohH and RbohJ is essential for proper pollen tube tip growth. Plant Cell 26: 1069-1080.
[106]
Kelliher,T., Starr,D., Richbourg,L., Chintamanani,S., Delzer, B., Nuccio,M.L., Green,J., Chen,Z., McCuiston,J., Wang,W., et al. (2017). MATRILINEAL, a sperm-specific phospholipase, triggers maize haploid induction. Nature 542: 105-109.
[107]
Kieber,J.J., Rothenberg, M., Roman,G., Feldmann,K.A., and Ecker, J.R. (1993). CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the Raf family of protein kinases. Cell 72: 427-441.
[108]
Kim,J.C., Laparra, H., Calderón-Urrea,A., Mottinger,J.P., Moreno,M.A., and Dellaporta, S.L. (2007). Cell cycle arrest of stamen initials in maize sex determination. Genetics 177: 2547-2551.
[109]
Kim,Y.J., Kim,M.H., Hong,W.J., Moon, S., Kim,S.T., Park,S.K., and Jung, K.H. (2021). OsMTD2-mediated reactive oxygen species (ROS) balance is essential for intact pollen-tube elongation in rice. Plant J. 107: 1131-1147.
[110]
Kong,F., Zhang,T., Liu,J., Heng, S., Shi,Q., Zhang,H., Wang,Z., Ge,L., Li, P., Lu,X., et al. (2017). Regulation of leaf angle by auricle development in maize. Mol. Plant 10: 516-519.
[111]
Kuromori,T., Seo,M., and Shinozaki,K. (2018). ABA transport and plant water stress responses. Trends Plant Sci. 23: 513-522.
[112]
Langan,T.D., and Oplinger, E.S. (1987). Growth and yield of ethephon treated maize. Agron. J. 79: 130-134.
[113]
Lassig,R., Gutermuth, T., Bey,T.D., Konrad,K.R., and Romeis, T. (2014). Pollen tube NAD(P)H oxidases act as a speed control to dampen growth rate oscillations during polarized cell growth. Plant J. 78: 94-106.
[114]
Lesk,C., Rowhani, P., and Ramankutty,N. (2016). Influence of extreme weather disasters on global crop production. Nature 529: 84-87.
[115]
Li,C., Qiao,Z., Qi,W., Wang, Q., Yuan,Y., Yang,X., Tang,Y., Mei,B., Lv, Y., Zhao,H., et al. (2015a). Genome-wide characterization of cis-acting DNA targets reveals the transcriptional regulatory framework of opaque2 in maize. Plant Cell 27: 532-545.
[116]
Li,C., Yue,Y., Chen,H., Qi, W., and Song,R. (2018). The ZmbZIP22 transcription factor regulates 27-kD γ-zein gene transcription during maize endosperm development. Plant Cell 30: 2402-2424.
[117]
Li,F., Murillo, C., and Wurtzel,E.T. (2007). Maize Y9 encodes a product essential for 15-cis-ζ-carotene isomerization. Plant Physiol. 144: 1181-1189.
[118]
Li,H., Wang,L., Liu,M., Dong, Z., Li,Q., Fei,S., Xiang,H., Liu,B., and Jin, W. (2020). Maize plant architecture is regulated by the ethylene biosynthetic gene ZmACS7. Plant Physiol. 183: 1184-1199.
[119]
Li,J. (2009). Production, breeding and process of maize in China. In Handbook of maize: Its biology, J.L.Bennetzen, S.C.Hake, eds (New York: Springer), pp. 563-576.
[120]
Li,J., Jiang,J., Qian,Q., Xu, Y., Zhang,C., Xiao,J., Du,C., Luo,W., Zou, G., Chen,M., et al. (2011). Mutation of rice BC12/GDD1, which encodes a kinesin-like protein that binds to a GA biosynthesis gene promoter, leads to dwarfism with impaired cell elongation. Plant Cell 23: 628-640.
[121]
Li,L., Hey,S., Liu,S., Liu, Q., McNinch,C., Hu,H., Wen,T., Marcon,C., Paschold, A., Bruce,W., et al. (2016). Characterization of maize roothairless6 which encodes a D-type cellulose synthase and controls the switch from bulge formation to tip growth. Sci. Rep. 6: 34395.
[122]
Li,W., Ma,M., Feng,Y., Li, H., Wang,Y., Ma,Y., Li,M., An,F., and Guo, H. (2015b). EIN2-directed translational regulation of ethylene signaling in Arabidopsis. Cell 163: 670-683.
[123]
Li,X., Meng,D., Chen,S., Luo, H., Zhang,Q., Jin,W., and Yan, J. (2017). Single nucleus sequencing reveals spermatid chromosome fragmentation as a possible cause of maize haploid induction. Nat. Commun. 8: 991.
[124]
Liang,L., Zhou,L., Tang,Y., Li, N., Song,T., Shao,W., Zhang,Z., Cai,P., Feng, F., Ma,Y., et al. (2019). A sequence-indexed Mutator insertional library for maize functional genomics study. Plant Physiol. 181: 1404-1414.
[125]
Liang,Y., Liu,H.J., Yan,J., and Tian, F. (2021). Natural variation in crops: Realized understanding, continuing promise. Annu. Rev. Plant Biol. 72: 357-385.
[126]
Lieberman,M., Kunishi, A., Mapson,L.W., and Wardale,D.A. (1966). Stimulation of ethylene production in apple tissue slices by methionine. Plant Physiol. 41: 376-382.
[127]
Lin,Z., Zhou,L., Zhong,S., Fang, X., Liu,H., Li,Y., Zhu,C., Liu,J., and Lin, Z. (2022). A gene regulatory network for tiller development mediated by Tin8 in maize. J. Exp. Bot. 73: 110-122.
[128]
Liu,C., Li,X., Meng,D., Zhong, Y., Chen,C., Dong,X., Xu,X., Chen,B., Li, W., Li,L., et al. (2017). A 4-bp insertion at ZmPLA1 encoding a putative phospholipase A generates haploid induction in maize. Mol. Plant 10: 520-522.
[129]
Liu,C., Zhong,Y., Qi,X., Chen, M., Liu,Z., Chen,C., Tian,X., Li,J., Jiao, Y., Wang,D., et al. (2020). Extension of the in vivo haploid induction system from diploid maize to hexaploid wheat. Plant Biotechnol. J. 18: 316-318.
[130]
Liu,Q., Galli,M., Liu,X., Federici, S., Buck,A., Cody,J., Labra,M., and Gallavotti,A. (2019). NEEDLE1 encodes a mitochondria localized ATP-dependent metalloprotease required for thermotolerant maize growth. Proc. Natl. Acad. Sci. U.S.A. 116: 19736-19742.
[131]
Liu,X., Hu,P., Huang,M., Tang, Y., Li,Y., Li,L., and Hou, X. (2016). The NF-YC-RGL2 module integrates GA and ABA signalling to regulate seed germination in Arabidopsis. Nat. Commun. 7: 12768.
[132]
Liu,X., Yu,Y., Yao,W., Yin, Z., Wang,Y., Huang,Z., Zhou,J.Q., Liu,J., Lu, X., Wang,F., et al. (2023). CRISPR/Cas9-mediated simultaneous mutation of three salicylic acid 5-hydroxylase (OsS5H) genes confers broad-spectrum disease resistance in rice. Plant Biotechnol. J. 21: 1873-1886.
[133]
Lorenzo,O., Chico,J.M., Saénchez-Serrano,J.J., and Solano,R. (2004). JASMONATE-INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis. Plant Cell 16: 1938-1950.
[134]
Lu,X., Liu,J., Ren,W., Yang, Q., Chai,Z., Chen,R., Wang,L., Zhao,J., Lang, Z., Wang,H., et al. (2018). Gene-indexed mutations in maize. Mol. Plant 11: 496-504.
[135]
Lunde,C., Kimberlin, A., Leiboff,S., Koo,A.J., and Hake, S. (2019). Tasselseed5 overexpresses a wound-inducible enzyme, ZmCYP94B1, that affects jasmonate catabolism, sex determination, and plant architecture in maize. Commun. Biol. 2: 114.
[136]
Luo,H., Meng,D., Liu,H., Xie, M., Yin,C., Liu,F., Dong,Z., and Jin,W. (2020). Ectopic expression of the transcriptional regulator silky3 causes pleiotropic meristem and sex determination defects in maize inflorescences. Plant Cell 32: 3750-3773.
[137]
Luo,Y., Zhang,M., Liu,Y., Liu, J., Li,W., Chen,G., Peng,Y., Jin,M., Wei, W., Jian,L., et al. (2022). Genetic variation in YIGE1 contributes to ear length and grain yield in maize. New Phytol. 234: 513-526.
[138]
Ma,B., He,S.J., Duan,K.X., Yin, C.C., Chen,H., Yang,C., Xiong,Q., Song,Q.X., Lu, X., Chen,H.W., et al. (2013). Identification of rice ethylene-response mutants and characterization of MHZ7/OsEIN2 in distinct ethylene response and yield trait regulation. Mol. Plant 6: 1830-1848.
[139]
Ma,C., Li,R., Sun,Y., Zhang, M., Li,S., Xu,Y., Song,J., Li,J., Qi, J., Wang,L., et al. (2023). ZmMYC2s play important roles in maize responses to simulated herbivory and jasmonate. J. Integr. Plant Biol. 65: 1041-1058.
[140]
Makarevitch,I., Thompson, A., Muehlbauer,G.J., and Springer,N.M. (2012). Brd1 gene in maize encodes a brassinosteroid C-6 oxidase. PLoS ONE. 7: e30798.
[141]
Marcon,C., Altrogge, L., Win,Y.N., Stöcker,T., Gardiner, J.M., Portwood,J.L.I., Opitz,N., Kortz,A., Baldauf,J.A., Hunter,C.T., et al. (2020). BonnMu: A sequence-indexed resource of transposon-induced maize mutations for functional genomics studies. Plant Physiol. 184: 620-631.
[142]
McCarty,D.R., Hattori, T., Carson,C.B., Vasil,V., Lazar,M., and Vasil,I.K. (1991). The Viviparous-1 developmental gene of maize encodes a novel transcriptional activator. Cell 66: 895-905.
[143]
McCarty,D.R., Mark Settles, A., Suzuki,M., Tan,B.C., Latshaw, S., Porch,T., Robin,K., Baier,J., Avigne,W., Lai, J., et al. (2005). Steady-state transposon mutagenesis in inbred maize. Plant J. 44: 52-61.
[144]
McConn,M., and Browse, J. (1996). The critical requirement for linolenic acid is pollen development, not photosynthesis, in an Arabidopsis mutant. Plant Cell 8: 403-416.
[145]
McSteen,P., Malcomber, S., Skirpan,A., Lunde,C., Wu,X., Kellogg,E., and Hake, S. (2007). barren inflorescence2 encodes a co-ortholog of the PINOID serine/threonine kinase and is required for organogenesis during inflorescence and vegetative development in maize. Plant Physiol. 144: 1000-1011.
[146]
Meng,D., Liu,C., Chen,S., and Jin, W. (2021). Haploid induction and its application in maize breeding. Mol. Breeding. 41: 20.
[147]
Merchante,C., Brumos, J., Yun,J., Hu,Q., Spencer, K.R., Enríquez,P., Binder,B.M., Heber,S., Stepanova,A.N., and Alonso,J.M. (2015). Gene-specific translation regulation mediated by the hormone-signaling molecule EIN2. Cell 163: 684-697.
[148]
Mittler,R., Zandalinas, S.I., Fichman,Y., and Van Breusegem,F. (2022). Reactive oxygen species signalling in plant stress responses. Nat. Rev. Mol. Cell Bio. 23: 663-679.
[149]
Nestler,J., Liu,S., Wen,T., Paschold, A., Marcon,C., Tang,H.M., Li,D., Li,L., Meeley, R.B., Sakai,H., et al. (2014). Roothairless5, which functions in maize (Zea mays L.) root hair initiation and elongation encodes a monocot-specific NADPH oxidase. Plant J. 79: 729-740.
[150]
Ning,Q., Jian,Y., Du,Y., Li, Y., Shen,X., Jia,H., Zhao,R., Zhan,J., Yang, F., Jackson,D., et al. (2021). An ethylene biosynthesis enzyme controls quantitative variation in maize ear length and kernel yield. Nat. Commun. 12: 5832.
[151]
Nisar,N., Li,L., Lu,S., Khin, N.C., and Pogson,B.J. (2015). Carotenoid metabolism in plants. Mol. Plant 8: 68-82.
[152]
Pan,J., Wen,H., Chen,G., Lin, W., Du,H., Chen,Y., Zhang,L., Lian,H., Wang, G., Cai,R., et al. (2021). A positive feedback loop mediated by CsERF31 initiates female cucumber flower development. Plant Physiol. 186: 1088-1100.
[153]
Park,J., Halitschke, R., Kim,H.B., Baldwin,I.T., Feldmann, K.A., and Feyereisen,R. (2002). A knock-out mutation in allene oxide synthase results in male sterility and defective wound signal transduction in Arabidopsis due to a block in jasmonic acid biosynthesis. Plant J. 31: 1-12.
[154]
Paschold,A., Marcon, C., Hoecker,N., and Hochholdinger,F. (2010). Molecular dissection of heterosis manifestation during early maize root development. Theor. Appl. Genet. 120: 383-388.
[155]
Pautler,M., Eveland, A.L., LaRue,T., Yang,F., Weeks,R., Lunde,C., Je, B.I., Meeley,R., Komatsu,M., Vollbrecht, E., et al. (2015). FASCIATED EAR4 encodes a bZIP transcription factor that regulates shoot meristem size in maize. Plant Cell 27: 104-120.
[156]
Peleman,J., Boerjan, W., Engler,G., Seurinck,J., Botterman, J., Alliotte,T., Van Montagu,M., and Inzé, D. (1989). Strong cellular preference in the expression of a housekeeping gene of Arabidopsis thaliana encoding S-adenosylmethionine synthetase. Plant Cell 1: 81-93.
[157]
Phillips,K.A., Skirpan, A.L., Liu,X., Christensen,A., Slewinski, T.L., Hudson,C., Barazesh,S., Cohen,J.D., Malcomber,S., and McSteen,P. (2011). vanishing tassel2 encodes a grass-specific tryptophan aminotransferase required for vegetative and reproductive development in maize. Plant Cell 23: 550-566.
[158]
Piperno,D.R., Ranere, A.J., Holst,I., Iriarte,J., and Dickau, R. (2009). Starch grain and phytolith evidence for early ninth millennium B.P. maize from the Central Balsas River Valley, Mexico. Proc. Natl. Acad. Sci. U.S.A. 106: 5019-5024.
[159]
Pitsili,E., Phukan, U.J., and Coll,N.S. (2020). Cell death in plant immunity. Cold Spring Harb. Perspect. Biol. 12: a036483.
[160]
Porch,T.G., Tseung, C., Schmelz,E.A., and Mark Settles,A. (2006). The maize Viviparous10/Viviparous13 locus encodes the Cnx1 gene required for molybdenum cofactor biosynthesis. Plant J. 45: 250-263.
[161]
Potuschak,T., Lechner, E., Parmentier,Y., Yanagisawa,S., Grava,S., Koncz,C., and Genschik, P. (2003). EIN3-dependent regulation of plant ethylene hormone signaling by two Arabidopsis F box proteins: EBF1 and EBF2. Cell 115: 679-689.
[162]
Qi,X., Guo,S., Wang,D., Zhong, Y., Chen,M., Chen,C., Cheng,D., Liu,Z., An, T., Li,J., et al. (2022). ZmCOI2a and ZmCOI2b redundantly regulate anther dehiscence and gametophytic male fertility in maize. Plant J. 110: 849-862.
[163]
Qin,H., He,L., and Huang,R. (2019). The coordination of ethylene and other hormones in primary root development. Front. Plant Sci. 10: 874.
[164]
Qin,P., Zhang,G., Hu,B., Wu, J., Chen,W., Ren,Z., Liu,Y., Xie,J., Yuan, H., Tu,B., et al. (2021). Leaf-derived ABA regulates rice seed development via a transporter-mediated and temperature-sensitive mechanism. Sci. Adv. 7: c8873.
[165]
Rai,M.I., Wang,X., Thibault,D.M., Kim,H.J., Bombyk, M.M., Binder,B.M., Shakeel,S.N., and Schaller, G.E. (2015). The ARGOS gene family functions in a negative feedback loop to desensitize plants to ethylene. BMC Plant Biol. 15: 157.
[166]
Reddy,S.K., Holalu, S.V., Casal,J.J., and Finlayson,S.A. (2013). Abscisic acid regulates axillary bud outgrowth responses to the ratio of red to far-red light. Plant Physiol. 163: 1047-1058.
[167]
Reneau,J.W., Khangura, R.S., Stager,A., Erndwein,L., Weldekidan, T., Cook,D.D., Dilkes,B.P., and Sparks, E.E. (2020). Maize brace roots provide stalk anchorage. Plant Direct. 4: e284.
[168]
Sakai,H., Hua,J., Chen,Q.G., Chang, C., Medrano,L.J., Bleecker,A.B., and Meyerowitz, E.M. (1998). ETR2 is an ETR1-like gene involved in ethylene signaling in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 95: 5812-5817.
[169]
Salvi,S., Sponza, G., Morgante,M., Tomes,D., Niu,X., Fengler,K.A., Meeley,R., Ananiev, E.V., Svitashev,S., Bruggemann,E., et al. (2007). Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize. Proc. Natl. Acad. Sci. U.S.A. 104: 11376-11381.
[170]
Sanders,P.M., Lee,P.Y., Biesgen,C., Boone, J.D., Beals,T.P., Weiler,E.W., and Goldberg, R.B. (2000). The Arabidopsis DELAYED DEHISCENCE1 gene encodes an enzyme in the jasmonic acid synthesis pathway. Plant Cell 12: 1041-1061.
[171]
Sato,T., and Theologis, A. (1989). Cloning the mRNA encoding 1-aminocyclopropane-1-carboxylate synthase, the key enzyme for ethylene biosynthesis in plants. Proc. Natl. Acad. Sci. U.S.A. 86: 6621-6625.
[172]
Savary,S., Willocquet, L., Pethybridge,S.J., Esker,P., McRoberts, N., and Nelson,A. (2019). The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 3: 430-439.
[173]
Schnable,P.S., Ware,D., Fulton,R.S., Stein, J.C., Wei,F., Pasternak,S., Liang,C., Zhang,J., Fulton, L., Graves,T.A., et al. (2009). The B73 maize genome: Complexity, diversity, and dynamics. Science 326: 1112-1115.
[174]
Schopfer,P. (2001). Hydroxyl radical-induced cell-wall loosening in vitro and in vivo: Implications for the control of elongation growth. Plant J. 28: 679-688.
[175]
Schwartz,S.H., Tan,B.C., Gage,D.A., Zeevaart, J.A.D., and McCarty,D.R. (1997). Specific oxidative cleavage of carotenoids by VP14 of maize. Science 276: 1872-1874.
[176]
Sheard,L.B., Tan,X., Mao,H., Withers, J., Ben-Nissan,G., Hinds,T.R., Kobayashi, Y., Hsu,F., Sharon,M., Browse, J., et al. (2010). Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature 468: 400-405.
[177]
Shi,J., Drummond, B.J., Habben,J.E., Brugire,N., Weers,B.P., Hakimi,S.M., Lafitte, H.R., Schussler,J.R., Mo,H., Beatty, M., et al. (2019). Ectopic expression of ARGOS8 reveals a role for ethylene in root-lodging resistance in maize. Plant J. 97: 378-390.
[178]
Shi,J., Drummond, B.J., Wang,H., Archibald,R.L., and Habben, J.E. (2016). Maize and Arabidopsis ARGOS proteins interact with ethylene receptor signaling complex, supporting a regulatory role for ARGOS in ethylene signal transduction. Plant Physiol. 171: 2783-2797.
[179]
Shi,J., Gao,H., Wang,H., Lafitte, H.R., Archibald,R.L., Yang,M., Hakimi, S.M., Mo,H., and Habben,J.E. (2017). ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnol. J. 15: 207-216.
[180]
Shi,J., Habben, J.E., Archibald,R.L., Drummond,B.J., Chamberlin, M.A., Williams,R.W., Lafitte,H.R., and Weers, B.P. (2015). Overexpression of ARGOS genes modifies plant sensitivity to ethylene, leading to improved drought tolerance in both Arabidopsis and maize. Plant Physiol. 169: 266-282.
[181]
Shiferaw,B., Prasanna, B.M., Hellin,J., and Bänziger,M. (2011). Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Sec. 3: 307.
[182]
Shu,K., Liu,X.D., Xie,Q., and He, Z.H. (2016). Two faces of one seed: hormonal regulation of dormancy and germination. Mol. Plant 9: 34-45.
[183]
Shull,G.H. (1948). What is “heterosis”? Genetics 33: 439-446.
[184]
Singh,M., Lewis,P.E., Hardeman,K., Bai, L., Rose,J.K.C., Mazourek,M., Chomet, P., and Brutnell,T.P. (2003). Activator mutagenesis of the Pink scutellum1/viviparous7 locus of maize. Plant Cell 15: 874-884.
[185]
Song,Q., Ando,A., Xu,D., Fang, L., Zhang,T., Huq,E., Qiao,H., Deng,X.W., and Chen, Z.J. (2018). Diurnal down-regulation of ethylene biosynthesis mediates biomass heterosis. Proc. Natl. Acad. Sci. U.S.A. 115: 5606-5611.
[186]
Song,W.C., Funk,C.D., and Brash,A.R. (1993). Molecular cloning of an allene oxide synthase: A cytochrome P450 specialized for the metabolism of fatty acid hydroperoxides. Proc. Natl. Acad. Sci. U.S.A. 90: 8519-8523.
[187]
Song,X., Meng,X., Guo,H., Cheng, Q., Jing,Y., Chen,M., Liu,G., Wang,B., Wang, Y., Li,J., et al. (2022). Targeting a gene regulatory element enhances rice grain yield by decoupling panicle number and size. Nat. Biotechnol. 40: 1403-1411.
[188]
Sosso,D., Luo,D., Li,Q., Sasse, J., Yang,J., Gendrot,G., Suzuki, M., Koch,K.E., McCarty,D.R., Chourey, P.S., et al. (2015). Seed filling in domesticated maize and rice depends on SWEET-mediated hexose transport. Nat. Genet. 47: 1489-1493.
[189]
Spanu,P., Reinhardt, D., and Boller,T. (1991). Analysis and cloning of the ethylene-forming enzyme from tomato by functional expression of its mRNA in Xenopus laevis oocytes. EMBO J. 10: 2007-2013.
[190]
Staswick,P.E., and Tiryaki, I. (2004). The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. Plant Cell 16: 2117-2127.
[191]
Steffens,B., and Rasmussen, A. (2016). The physiology of adventitious roots. Plant Physiol. 170: 603-617.
[192]
Stintzi,A., and Browse, J. (2000). The Arabidopsis male-sterile mutant, opr3, lacks the 12-oxophytodienoic acid reductase required for jasmonate synthesis. Proc. Natl. Acad. Sci. U.S.A. 97: 10625-10630.
[193]
Stott,P. (2016). How climate change affects extreme weather events. Science 352: 1517-1518.
[194]
Strange,R.N., and Scott, P.R. (2005). Plant disease: A threat to global food security. Annu. Rev. Phytopathol. 43: 83-116.
[195]
Studer,A., Zhao,Q., Ross-Ibarra,J., and Doebley,J. (2011). Identification of a functional transposon insertion in the maize domestication gene tb1. Nat. Genet. 43: 1160-1163.
[196]
Sun,G., Geng,S., Zhang,H., Jia, M., Wang,Z., Deng,Z., Tao,S., Liao,R., Wang, F., Kong,X., et al. (2022). Matrilineal empowers wheat pollen with haploid induction potency by triggering postmitosis reactive oxygen species activity. New Phytol. 233: 2405-2414.
[197]
Sun,H., Wang,C., Chen,X., Liu, H., Huang,Y., Li,S., Dong,Z., Zhao,X., Tian, F., and Jin,W. (2020). Dlf1 promotes floral transition by directly activating ZmMADS4 and ZmMADS67 in the maize shoot apex. New Phytol. 228: 1386-1400.
[198]
Sun,S., Chen,D., Li,X., Qiao, S., Shi,C., Li,C., Shen,H., and Wang,X. (2015). Brassinosteroid signaling regulates leaf erectness in Oryza sativa via the control of a specific U-type cyclin and cell proliferation. Dev. Cell 34: 220-228.
[199]
Suzuki,M., Ketterling, M.G., Li,Q., and McCarty,D.R. (2003). Viviparous1 alters global gene expression patterns through regulation of abscisic acid signaling. Plant Physiol. 132: 1664-1677.
[200]
Suzuki,M., Latshaw, S., Sato,Y., Settles,A.M., Koch,K.E., Hannah,L.C., Kojima, M., Sakakibara,H., and McCarty,D.R. (2008). The maize Viviparous8 locus, encoding a putative ALTERED MERISTEM PROGRAM1-like peptidase, regulates abscisic acid accumulation and coordinates embryo and endosperm development. Plant Physiol. 146: 1193-1206.
[201]
Suzuki,M., Mark Settles, A., Tseung,C., Li,Q., Latshaw, S., Wu,S., Porch,T.G., Schmelz, E.A., James,M.G., and McCarty,D.R. (2006). The maize viviparous15 locus encodes the molybdopterin synthase small subunit. Plant J. 45: 264-274.
[202]
Tan,B.C., Schwartz, S.H., Zeevaart,J.A.D., and McCarty,D.R. (1997). Genetic control of abscisic acid biosynthesis in maize. Proc. Natl. Acad. Sci. U.S.A. 94: 12235-12240.
[203]
Thines,B., Katsir, L., Melotto,M., Niu,Y., Mandaokar, A., Liu,G., Nomura,K., He,S.Y., Howe,G.A., and Browse, J. (2007). JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling. Nature 448: 661-665.
[204]
Tian,J., Wang,C., Xia,J., Wu, L., Xu,G., Wu,W., Li,D., Qin,W., Han, X., Chen,Q., et al. (2019). Teosinte ligule allele narrows plant architecture and enhances high-density maize yields. Science 365: 658-664.
[205]
Tsukagoshi,H., Busch,W., and Benfey,P.N. (2010). Transcriptional regulation of ROS controls transition from proliferation to differentiation in the root. Cell 143: 606-616.
[206]
Vicente-Carbajosa,J., Moose, S.P., Parsons,R.L., and Schmidt,R.J. (1997). A maize zinc-finger protein binds the prolamin box in zein gene promoters and interacts with the basic leucine zipper transcriptional activator Opaque2. Proc. Natl. Acad. Sci. U.S.A. 94: 7685-7690.
[207]
von Malek,B., van der Graaff, E., Schneitz,K., and Keller,B. (2002). The Arabidopsis male-sterile mutant dde2-2 is defective in the ALLENE OXIDE SYNTHASE gene encoding one of the key enzymes of the jasmonic acid biosynthesis pathway. Planta 216: 187-192.
[208]
Waadt,R., Seller, C.A., Hsu,P., Takahashi,Y., Munemasa, S., and Schroeder,J.I. (2022). Plant hormone regulation of abiotic stress responses. Nat. Rev. Mol. Cell Bio. 23: 680-694.
[209]
Wan,X., Wu,S., Li,Z., Dong, Z., An,X., Ma,B., Tian,Y., and Li,J. (2019). Maize genic male-sterility genes and their applications in hybrid breeding: progress and perspectives. Mol. Plant 12: 321-342.
[210]
Wang,B., Hou,M., Shi,J., Ku, L., Song,W., Li,C., Ning,Q., Li,X., Li, C., Zhao,B., et al. (2023). De novo genome assembly and analyses of 12 founder inbred lines provide insights into maize heterosis. Nat. Genet. 55: 312-323.
[211]
Wang,C., Qi,C., Luo,J., Liu, L., He,Y., and Chen,L. (2019). Characterization of LRL5 as a key regulator of root hair growth in maize. Plant J. 98: 71-82.
[212]
Wang,F., Yuan,Z., Zhao,Z., Li, C., Zhang,X., Liang,H., Liu,Y., Xu,Q., and Liu, H. (2020). Tasselseed5 encodes a cytochrome C oxidase that functions in sex determination by affecting jasmonate catabolism in maize. J. Integr. Plant Biol. 62: 247-255.
[213]
Wang,J., Zhou,L., Shi,H., Chern, M., Yu,H., Yi,H., He,M., Yin,J., Zhu, X., Li,Y., et al. (2018). A single transcription factor promotes both yield and immunity in rice. Science 361: 1026-1028.
[214]
Wang,X., Wang,J., Jin,D., Guo, H., Lee,T.H., Liu,T., and Paterson, A.H. (2015). Genome alignment spanning major Poaceae lineages reveals heterogeneous evolutionary rates and alters inferred dates for key evolutionary events. Mol. Plant 8: 885-898.
[215]
Wang,Y., Bao,J., Wei,X., Wu, S., Fang,C., Li,Z., Qi,Y., Gao,Y., Dong, Z., and Wan,X. (2022). Genetic structure and molecular mechanisms underlying the formation of tassel, anther, and pollen in the male inflorescence of maize (Zea mays L.). Cells 11: 1753.
[216]
Wasternack,C., and Strnad, M. (2016). Jasmonate signaling in plant stress responses and development: active and inactive compounds. New Biotechnol. 33: 604-613.
[217]
Waszczak,C., Carmody, M., and Kangasjärvi,J. (2018). Reactive oxygen species in plant signaling. Annu. Rev. Plant Biol. 69: 209-236.
[218]
Wen,T., Hochholdinger, F., Sauer,M., Bruce,W., and Schnable, P.S. (2005). The roothairless1 gene of maize encodes a homolog of sec. 3, which is involved in polar exocytosis. Plant Physiol. 138: 1637-1643.
[219]
Whipple,C.J., Kebrom, T.H., Weber,A.L., Yang,F., Hall,D., Meeley,R., Schmidt, R., Doebley,J., Brutnell,T.P., and Jackson, D.P. (2011). grassy tillers1 promotes apical dominance in maize and responds to shade signals in the grasses. Proc. Natl. Acad. Sci. U.S.A. 108: E506-E512.
[220]
Williams-Carrier,R., Stiffler, N., Belcher,S., Kroeger,T., Stern,D.B., Monde,R., Coalter, R., and Barkan,A. (2010). Use of Illumina sequencing to identify transposon insertions underlying mutant phenotypes in high-copy Mutator lines of maize. Plant J. 63: 167-177.
[221]
Wills,D.M., Whipple, C.J., Takuno,S., Kursel,L.E., Shannon, L.M., Ross-Ibarra,J., and Doebley,J.F. (2013). From many, one: Genetic control of prolificacy during maize domestication. PLoS Genet. 9: e1003604.
[222]
Wittwer,S.H., and Hillyer, I.G. (1954). Chemical induction of male sterility in cucurbits. Science 120: 893-894.
[223]
Woodhouse,M.R., Cannon, E.K., Portwood,J.L., Harper,L.C., Gardiner, J.M., Schaeffer,M.L., and Andorf,C.M. (2021). A pan-genomic approach to genome databases using maize as a model system. BMC Plant Biol. 21: 385.
[224]
Wu,Q., Xu,F., Liu,L., Char, S.N., Ding,Y., Je,B.I., Schmelz, E., Yang,B., and Jackson,D. (2020). The maize heterotrimeric G protein β subunit controls shoot meristem development and immune responses. Proc. Natl. Acad. Sci. U.S.A. 117: 1799-1805.
[225]
Wu,Y., and Messing, J. (2014). Proteome balancing of the maize seed for higher nutritional value. Front. Plant Sci. 5: 240.
[226]
Xiang,Y., Sun,X., Gao,S., Qin, F., and Dai,M. (2017). Deletion of an endoplasmic reticulum stress response element in a ZmPP2C-A gene facilitates drought tolerance of maize seedlings. Mol. Plant 10: 456-469.
[227]
Xiao,Y., Jiang,S., Cheng,Q., Wang, X., Yan,J., Zhang,R., Qiao,F., Ma,C., Luo, J., Li,W., et al. (2021). The genetic mechanism of heterosis utilization in maize improvement. Genome Biol. 22: 148.
[228]
Xie,D., Feys,B.F., James,S., Nieto-Rostro, M., and Turner,J.G. (1998). COI1: An Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 280: 1091-1094.
[229]
Xiong,W., Wang,C., Zhang,X., Yang, Q., Shao,R., Lai,J., and Du, C. (2017). Highly interwoven communities of a gene regulatory network unveil topologically important genes for maize seed development. Plant J. 92: 1143-1156.
[230]
Yadava,P., Abhishek, A., Singh,R., Singh,I., Kaul,T., Pattanayak,A., and Agrawal,P.K. (2017). Advances in maize transformation technologies and development of transgenic maize. Front. Plant Sci. 7: 1949.
[231]
Yan,Y., Christensen, S., Isakeit,T., Engelberth,J., Meeley, R., Hayward,A., Emery,R.J.N., and Kolomiets, M.V. (2012). Disruption of OPR7 and OPR8 reveals the versatile functions of jasmonic acid in maize development and defense. Plant Cell 24: 1420-1436.
[232]
Yan,Y., Huang,P., Borrego,E., and Kolomiets, M. (2014). New perspectives into jasmonate roles in maize. Plant Signal. Behav. 9: e970442.
[233]
Yang,C., Lu,X., Ma,B., Chen, S., and Zhang,J. (2015a). Ethylene signaling in rice and Arabidopsis: conserved and diverged aspects. Mol. Plant 8: 495-505.
[234]
Yang,F., Bui,H.T., Pautler,M., Llaca, V., Johnston,R., Lee,B.H., Kolbe,A., Sakai,H., and Jackson, D. (2015b). A maize glutaredoxin gene, abphyl2, regulates shoot meristem size and phyllotaxy. Plant Cell 27: 121-131.
[235]
Yang,H., Nukunya, K., Ding,Q., and Thompson,B.E. (2022a). Tissue-specific transcriptomics reveal functional differences in floral development. Plant Physiol. 188: 1158-1173.
[236]
Yang,R.S., Xu,F., Wang,Y.M., Zhong, W.S., Dong,L., Shi,Y.N., Tang,T.J., Sheng,H.J., Jackson, D., and Yang,F. (2021a). Glutaredoxins regulate maize inflorescence meristem development via redox control of TGA transcriptional activity. Nat. Plants 7: 1589-1601.
[237]
Yang,T., Guo,L., Ji,C., Wang, H., Wang,J., Zheng,X., Xiao,Q., and Wu,Y. (2021b). The B3 domain-containing transcription factor ZmABI19 coordinates expression of key factors required for maize seed development and grain filling. Plant Cell 33: 104-128.
[238]
Yang,T., Wang,H., Guo,L., Wu, X., Xiao,Q., Wang,J., Wang,Q., Ma,G., Wang, W., and Wu,Y. (2022b). ABA-induced phosphorylation of basic leucine zipper 29, ABSCISIC ACID INSENSITIVE 19, and Opaque2 by SnRK2.2 enhances gene transactivation for endosperm filling in maize. Plant Cell 34: 1933-1956.
[239]
Yao,C., and Finlayson, S.A. (2015). Abscisic acid is a general negative regulator of Arabidopsis axillary bud growth. Plant Physiol. 169: 611-626.
[240]
Yao,L., Zhang,Y., Liu,C., Liu, Y., Wang,Y., Liang,D., Liu,J., Sahoo,G., and Kelliher, T. (2018). OsMATL mutation induces haploid seed formation in indica rice. Nat. Plants 4: 530-533.
[241]
Yi,G., Neelakandan, A.K., Gontarek,B.C., Vollbrecht,E., and Becraft, P.W. (2015). The naked endosperm genes encode duplicate INDETERMINATE domain transcription factors required for maize endosperm cell patterning and differentiation. Plant Physiol. 167: 443-456.
[242]
Yi,J., Moon,S., Lee,Y., Zhu, L., Liang,W., Zhang,D., Jung,K., and An,G. (2016). Defective Tapetum Cell Death 1 (DTC1) regulates ROS levels by binding to metallothionein during tapetum degeneration. Plant Physiol. 170: 1611-1623.
[243]
Young,T.E., Meeley, R.B., and Gallie,D.R. (2004). ACC synthase expression regulates leaf performance and drought tolerance in maize. Plant J. 40: 813-825.
[244]
Zeng,J., Dong,Z., Wu,H., Tian, Z., and Zhao,Z. (2017). Redox regulation of plant stem cell fate. EMBO J. 36: 2844-2855.
[245]
Zhan,J., Li,G., Ryu,C.H., Ma, C., Zhang,S., Lloyd,A., Hunter, B.G., Larkins,B.A., Drews,G.N., Wang,X., et al. (2018). Opaque-2 regulates a complex gene network associated with cell differentiation and storage functions of maize endosperm. Plant Cell 30: 2425-2446.
[246]
Zhang,D., and Wilson, Z.A. (2009). Stamen specification and anther development in rice. Chin. Sci. Bull. 54: 2342-2353.
[247]
Zhang,H., Li,S., Yang,L., Cai, G., Chen,H., Gao,D., Lin,T., Cui,Q., Wang, D., Li,Z., et al. (2021a). Gain-of-function of the 1-aminocyclopropane-1-carboxylate synthase gene ACS1G induces female flower development in cucumber gynoecy. Plant Cell 33: 306-321.
[248]
Zhang,H., Wang,X., Yan,A., Deng, J., Xie,Y., Liu,S., Liu,D., He,L., Weng, J., and Xu,J. (2023). Evolutionary analysis of respiratory burst oxidase homolog (RBOH) genes in plants and characterization of ZmRBOHs. Int. J. Mol. Sci. 24: 3858.
[249]
Zhang,K., Wang,F., Liu,B., Xu, C., He,Q., Cheng,W., Zhao,X., Ding,Z., Zhang, W., Zhang,K., et al. (2021b). ZmSKS13, a cupredoxin domain-containing protein, is required for maize kernel development via modulation of redox homeostasis. New Phytol. 229: 2163-2178.
[250]
Zhang,L., Zhang,X., Wang,X., Xu, J., Wang,M., Li,L., Bai,G., Fang,H., Hu, S., Li,J., et al. (2019a). SEED CAROTENOID DEFICIENT functions in isoprenoid biosynthesis via the plastid MEP pathway. Plant Physiol. 179: 1723-1738.
[251]
Zhang,L.Y., Bai,M.Y., Wu,J., Zhu, J.Y., Wang,H., Zhang,Z., Wang,W., Sun,Y., Zhao, J., Sun,X., et al. (2009). Antagonistic HLH/bHLH transcription factors mediate brassinosteroid regulation of cell elongation and plant development in rice and Arabidopsis. Plant Cell 21: 3767-3780.
[252]
Zhang,X., Lin,Z., Wang,J., Liu, H., Zhou,L., Zhong,S., Li,Y., Zhu,C., Liu, J., and Lin,Z. (2019b). The tin1 gene retains the function of promoting tillering in maize. Nat. Commun. 10: 5608.
[253]
Zhang,X., Mi,Y., Mao,H., Liu, S., Chen,L., and Qin,F. (2020). Genetic variation in ZmTIP1 contributes to root hair elongation and drought tolerance in maize. Plant Biotechnol. J. 18: 1271-1283.
[254]
Zhang,Y., and Turner, J.G. (2008). Wound-induced endogenous jasmonates stunt plant growth by inhibiting mitosis. PLoS ONE. 3: e3699.
[255]
Zhang,Z., Dong,J., Ji,C., Wu, Y., and Messing,J. (2019c). NAC-type transcription factors regulate accumulation of starch and protein in maize seeds. Proc. Natl. Acad. Sci. U.S.A. 116: 11223-11228.
[256]
Zhao,Y., Zhang,Y., Wang,L., Wang, X., Xu,W., Gao,X., and Liu, B. (2018). Mapping and functional analysis of a maize silkless mutant sk-A7110. Front. Plant Sci. 9: 1227.
[257]
Zheng,S., Li,J., Ma,L., Wang, H., Zhou,H., Ni,E., Jiang,D., Liu,Z., and Zhuang, C. (2019). OsAGO2 controls ROS production and the initiation of tapetal PCD by epigenetically regulating OsHXK1 expression in rice anthers. Proc. Natl. Acad. Sci. U.S.A. 116: 7549-7558.
[258]
Zhou,S., Zhang,Y.K., Kremling,K.A., Ding,Y., Bennett, J.S., Bae,J.S., Kim,D.K., Ackerman, H.H., Kolomiets,M.V., Schmelz,E.A., et al. (2019). Ethylene signaling regulates natural variation in the abundance of antifungal acetylated diferuloylsucroses and Fusarium graminearum resistance in maize seedling roots. New Phytol. 221: 2096-2111.
[259]
Ziegler,J., Stenzel, I., Hause,B., Maucher,H., Hamberg, M., Grimm,R., Ganal,M., and Wasternack, C. (2000). Molecular cloning of allene oxide cyclase: the enzyme establishing the stereochemistry of octadecanoids and jasmonates. J. Biol. Chem. 275: 19132-19138.

RIGHTS & PERMISSIONS

2023 2023 Institute of Botany, Chinese Academy of Sciences.
PDF

Accesses

Citations

Detail

Sections
Recommended

/