Spatial distribution of vegetation carbon stock among different organs over the Tibetan Plateau: on an intensive field survey

Weixiang Cai, Nianpeng He, Li Xu

Journal of Forestry Research ›› 2024, Vol. 35 ›› Issue (1) : 143.

Journal of Forestry Research All Journals
Journal of Forestry Research ›› 2024, Vol. 35 ›› Issue (1) : 143. DOI: 10.1007/s11676-024-01793-9
Original Paper

Spatial distribution of vegetation carbon stock among different organs over the Tibetan Plateau: on an intensive field survey

Author information +
History +

Abstract

Tibetan Plateau, as one of the most carbon intensive regions in China, is crucial in the carbon cycle, and accurately estimating its vegetation carbon density (C VEG) is essential for assessing regional and national carbon balance. However, the spatial distribution of regional C VEG is not available remains highly uncertain due to lack of systematic research, especially for different organs. Here, we investigated the spatial distribution patterns and driving factors of C VEG among different plant organs (leaf, branch, trunk and root) by systematically field grid-sampling 2040 field-plots of plant communities over the Tibetan Plateau from 2019 to 2020. The results showed that the carbon content of plant organs ranged from 255.53 to 515.58 g kg–1, with the highest in branches and the lowest in roots. Among the different plant functional groups, the highest C VEG was found in evergreen coniferous forests, and the lowest in desert grasslands, with an average C VEG of 1603.98 g m–2. C VEG increased spatially from northwest to southeast over the Tibetan Plateau, with MAP being the dominant factor. Furthermore, the total vegetation carbon stock on the Tibetan Plateau was estimated to be 1965.62 Tg for all vegetation types. Based on the comprehensive field survey dataset, the Random Forest model effectively predicted and mapped the spatial distribution of C VEG (including aboveground, belowground, and the total biomass carbon density) over the Tibetan Plateau with notable accuracy (validation R 2 values were 71%, 56%, and 64% for C AGB, C BGB, and C VEG, respectively) at a spatial resolution of 1 km × 1 km. Our findings can help improve the accuracy of regional carbon stock estimations and provide parameters for carbon cycle model optimization and remote sensing calibration in the future.

Cite this article

Download citation ▾
Weixiang Cai, Nianpeng He, Li Xu. Spatial distribution of vegetation carbon stock among different organs over the Tibetan Plateau: on an intensive field survey. Journal of Forestry Research, 2024, 35(1): 143 https://doi.org/10.1007/s11676-024-01793-9
This is a preview of subscription content, contact us for subscripton.

References

ChengCJ, HeNP, LiMX, XuL, CaiWX, LiX, ZhaoWZ, LiC, SunOJ. Plant species richness on the Tibetan Plateau: patterns and determinants. Ecography, 2023, 1: e06265
CrossRef Google scholar
DengJJ, ZhouL, ZhouWM, WangQW, YuDP. Effect of microfibers combined with UV-B and drought on plant community. Chemosphere, 2022, 288(Pt 1): 132413
CrossRef Google scholar
ErbKH, KastnerT, PlutzarC, BaisALS, CarvalhaisN, FetzelT, GingrichS, HaberlH, LaukC, NiedertscheiderM, PongratzJ, ThurnerM, LuyssaertS. Unexpectedly large impact of forest management and grazing on global vegetation biomass. Nature, 2018, 553(7686): 73-76
CrossRef Google scholar
FriedlingsteinP, O'SullivanM, JonesMW, AndrewRM, BakkerDCE, HauckJ, LandschützerP, LeQC, LuijkxIT, PetersGP, PetersW, PongratzJ, SchwingshacklC, SitchS, CanadellJG, CiaisP, JacksonRB, AlinSR, AnthoniP, BarberoL, BatesNR, BeckerM, BellouinN, DecharmeB, BoppL, BrasikaIBM, CaduleP, ChamberlainMA, ChandraN, ChauT, ChevallierF, ChiniLP, CroninM, DouXY, EnyoK, EvansW, FalkS, FeelyRA, FengL, FordDJ, GasserT, GhattasJ, GkritzalisT, GrassiG, GregorL, GruberN, GürsesÖ, HarrisI, HefnerM, HeinkeJ, HoughtonRA, HurttGC, IidaY, IlyinaT, JacobsonAR, JainA, JarníkováT, JersildA, JiangF, JinZ, JoosF, KatoE, KeelingRF, KennedyD, KleinGK, KnauerJ, KorsbakkenJI, KörtzingerA, LanX, LefèvreN, LiHM, LiuJJ, LiuZQ, MaL, MarlandG, MayotN, McGuirePC, McKinleyGA, MeyerG, MorganEJ, MunroDR, NakaokaSI, NiwaY, O'BrienKM, OlsenA, OmarAM, OnoT, PaulsenM, PierrotD, PocockK, PoulterB, PowisCM, RehderG, ResplandyL, RobertsonE, RödenbeckC, RosanTM, SchwingerJ, SéférianR, SmallmanTL, SmithSM, Sospedra-AlfonsoR, SunQ, SuttonAJ, SweeneyC, TakaoS, TansPP, TianHQ, TilbrookB, TsujinoH, TubielloF, van der WerfGR, van OoijenE, WanninkhofR, WatanabeM, Wimart-RousseauC, YangDX, YangXJ, YuanWP, YueX, ZaehleS, ZengJY, ZhengB. Global carbon budget 2023. Earth Syst Sci Data, 2023, 15(12): 5301-5369
CrossRef Google scholar
HanDR, HuZM, WangXH, WangT, ChenAP, WengQH, LiangMQ, ZengX, CaoRC, DiK, LuoDN, ZhangGR, YangYH, HeHL, FanJW, YuGR. Shift in controlling factors of carbon stocks across biomes on the Qinghai-Tibetan Plateau. Environ Res Lett, 2022, 17(7): 074016
CrossRef Google scholar
HeNP, WenD, ZhuJX, TangXL, XuL, ZhangL, HuHF, HuangM, YuGR. Vegetation carbon sequestration in Chinese forests from 2010 to 2050. Glob Chang Biol, 2017, 23(4): 1575-1584
CrossRef Google scholar
HeX, LeiYC, XueCQ, XuQH, LiHK, CaoL. Carbon density uncertainty estimates for Schima superba in Guangdong Province. Sci Silvae Sin, 2019, 55(11): 163-171 (in Chinese)
HeNP, YanP, LiuCC, XuL, LiMX, Van MeerbeekK, ZhouGS, ZhouGY, LiuSR, ZhouXH, LiSG, NiuSL, HanXG, BuckleyTN, SackL, YuGR. Predicting ecosystem productivity based on plant community traits. Trends Plant Sci, 2023, 28(1): 43-53
CrossRef Google scholar
Hou XY, Sun SZ, Zhang JW, He MG, Wang YF, Kong DZ, Wang SQ (2012) The vegetation map at the 1:4,000,000 of China (1979). National Tibetan Plateau/Third Pole Environment Data Center. https://doi.org/10.11888/Ecolo.tpdc.270623
HoughtonRA, HallF, GoetzSJ. Importance of biomass in the global carbon cycle. J Geophys Res Biogeosci, 2009, 114(G2): G00E03
CrossRef Google scholar
HuangYY, CiaisP, SantoroM, MakowskiD, ChaveJ, SchepaschenkoD, AbramoffRZ, GollDS, YangH, ChenY, WeiW, PiaoSL. A global map of root biomass across the world’s forests. Earth Syst Sci Data, 2021, 13(9): 4263-4274
CrossRef Google scholar
JiaoCC, YuGR, HeNP, MaAN, GeJP, HuZM. Spatial pattern of grassland aboveground biomass and its environmental controls in the Eurasian steppe. J Geogr Sci, 2017, 27(1): 3-22
CrossRef Google scholar
JiaoCL, ZhangJH, WangXC, HeNP. Plant magnesium on the Qinghai-Tibetan Plateau: spatial patterns and influencing factors. Sci Total Environ, 2023, 862(7): 160743
CrossRef Google scholar
LefcheckJS. piecewiseSEM: piecewise structural equationmodelling inrfor ecology, evolution, and systematics. Methods Ecol Evol, 2016, 7(5): 573-579
CrossRef Google scholar
LiWH, ZhaoXQ, ZhangXZ, ShiPL, WangXD, ZhaoL. Change mechanism in main ecosystems and its effect of carbon source/sink function on the Qinghai-Tibetan Plateau. Chin J Nat, 2013, 35(3): 172-178 (in Chinese)
LiX, LiMX, XuL, LiuCC, ZhaoWZ, ChengCJ, HeNP. Allometry and distribution of nitrogen in natural plant communities of the Tibetan Plateau. Front Plant Sci, 2022, 13: 845813
CrossRef Google scholar
LiXY, LongD, ScanlonBR, MannME, LiXD, TianFQ, SunZL, WangGQ. Climate change threatens terrestrial water storage over the Tibetan Plateau. Nat Clim Chang, 2022, 12(9): 801-807
CrossRef Google scholar
LiRW, YeCC, WangY, HanGD, SunJ. Carbon storage estimation and its drivering force analysis based on InVEST model in the Tibetan Plateau. Acta Agrestia Sin, 2021, 29(S1): 43-51 in Chinese)
CrossRef Google scholar
LiuSQ, BianZ, AnTY, XiaCZ, ZhangM, ChenJ, HouRP, ZhangKB, ZhaoHQ. Carbon pools of biomass and dead organic matter in typical forest ecosystems of Tibet: a new estimation based on the first forestry carbon sequestration monitoring undertaken in China. Land Degrad Dev, 2021, 32(10): 2877-2891
CrossRef Google scholar
PiaoSL, NiuB, ZhuJT, ZhangXZ, WangT, WangSP, LiangEY. Responses and feedback of the Tibetan Plateau’s alpine ecosystem to climate change. Chin Sci Bull, 2019, 64(27): 2842-2855
CrossRef Google scholar
PiaoSL, HeY, WangXH, ChenFH. Estimation of China’s terrestrial ecosystem carbon sink: methods, progress and prospects. Sci China Earth Sci, 2022, 65(4): 641-651
CrossRef Google scholar
PiaoS, FangJ, ZhouL, TanK, TaoS. Changes in biomass carbon stocks in China’s grasslands between 1982 and 1999. Glob Biogeochem Cycles, 2007, 21(2): GB2002
CrossRef Google scholar
ReichsteinM, BahnM, CiaisP, FrankD, MahechaMD, SeneviratneSI, ZscheischlerJ, BeerC, BuchmannN, FrankDC, PapaleD, RammigA, SmithP, ThonickeK, van der VeldeM, ViccaS, WalzA, WattenbachM. Climate extremes and the carbon cycle. Nature, 2013, 500(7462): 287-295
CrossRef Google scholar
SilveiraEMO, SilvaSHG, Acerbi-JuniorFW, CarvalhoMC, CarvalhoLMT, ScolforoJRS, WulderMA. Object-based random forest modelling of aboveground forest biomass outperforms a pixel-based approach in a heterogeneous and mountain tropical environment. Int J Appl Earth Obs Geoinf, 2019, 78: 175-188
CrossRef Google scholar
SunHL, ZhengD, YaoTD, ZhangYL. Protection and construction of the national ecological security shelter zone on Tibetan Plateau. Acta Geogr Sin, 2012, 67(1): 3-12 (in Chinese)
WangZS, GongH, HuangM, GuFX, WeiJ, GuoQC, SongWC. A multimodel random forest ensemble method for an improved assessment of Chinese terrestrial vegetation carbon density. Methods Ecol Evol, 2021, 14(1): 117-132
CrossRef Google scholar
WangYF, LvWW, XueK, WangSP, ZhangLR, HuRH, ZengH, XuXL, LiYM, JiangLL, HaoYB, DuJQ, SunJP, DorjiT, PiaoSL, WangCH, LuoCY, ZhangZH, ChangXF, ZhangMM, HuYG, WuTH, WangJZ, LiBW, LiuPP, ZhouY, WangA, DongSK, ZhangXZ, GaoQZ, ZhouHK, ShenMG, WilkesA, MieheG, ZhaoXQ, NiuHS. Grassland changes and adaptive management on the Qinghai-Tibetan Plateau. Nat Rev Earth Environ, 2022, 3(10): 668-683
CrossRef Google scholar
WangXM, HouJH, HeNP. Distribution pattern and driving factors of plant community productivity from east to west in China. Acta Ecol Sin, 2023, 43(6): 2488-2500 (in Chinese)
XieZQ, WangY, TangZY, XuWT. Handbook of biomass models for shrubs in China, 2018 Beijing Science Press (In Chinese)
XuL, SaatchiSS, YangY, YuYF, PongratzJ, BloomAA, BowmanK, WordenJ, LiuJJ, YinY, DomkeG, McRobertsRE, WoodallC, NabuursGJ, de-MiguelS, KellerM, HarrisN, MaxwellS, SchimelD. Changes in global terrestrial live biomass over the 21st century. Sci Adv, 2021, 7(27): 9829
CrossRef Google scholar
YuC, XuL, LiMX, HeNP. Phosphorus storage and allocation in vegetation on the Tibetan Plateau. Ecol Indic, 2022, 145: 109636
CrossRef Google scholar
ZhangJH, HeNP, LiuCC, XuL, ChenZ, LiY, WangRM, YuGR, SunW, XiaoCW, ChenHYH, ReichPB. Variation and evolution of C: N ratio among different organs enable plants to adapt to N-limited environments. Glob Chang Biol, 2020, 26(4): 2534-2543
CrossRef Google scholar
ZhangHF, TangZG, WangBY, KanHC, SunY, QinY, MengBP, LiM, ChenJJ, LvYY, ZhangJG, NiuSL, YiSH. A 250 m annual alpine grassland AGB dataset over the Qinghai-Tibet Plateau (2000–2019) in China based on in situ measurements, UAV photos, and MODIS data. Earth Syst Sci Data, 2023, 15(2): 821-846
CrossRef Google scholar
ZhaoN, YuGR, HeNP, WangQF, GuoDL, ZhangXY, WangRL, XuZW, JiaoCC, LiNN, JiaYL. Coordinated pattern of multi-element variability in leaves and roots across Chinese forest biomes. Glob Ecol Biogeogr, 2016, 25(3): 359-367
CrossRef Google scholar
ZhaoZH, LiuGH, MouNX, XieYC, XuZR, LiY. Assessment of carbon storage and its influencing factors in Qinghai-Tibet plateau. Sustainability, 2018, 10(6): 1864
CrossRef Google scholar
ZhouGY, YinGC, TangXL, WenDZ, LiuCP, KuangYW, WangWT. Carbon stocks in forest ecosystems in China: biomass equations, 2018 Beijing Science Press (In Chinese)
ZhuGL, LiJ, WeiXH, HeNP. Longitudinal patterns of productivity and plant diversity in Tibetan alpine grasslands. J Nat Resour, 2017, 32(2): 210-222 (in Chinese)

19

Accesses

0

Citations

1

Altmetric

Detail

Sections
Recommended

/