Promotion of biomass, photosynthesis, and root growth of seedling biomass, photosynthesis, and root growth of Populus davidiana × P. bolleana by two species of ectomycorrhizal fungi
Promotion of biomass, photosynthesis, and root growth of seedling biomass, photosynthesis, and root growth of Populus davidiana × P. bolleana by two species of ectomycorrhizal fungi
The addition of ectomycorrhizal fungi (ECMF), beneficial rhizosphere microorganisms, to the soil can promote plant growth and resistance. Here, Populus davidiana × Populus bolleana tissue culture seedlings were grown for 3 months in soils inoculated with one of the species, then seedlings were assessed for mycorrhizal colonization rate and growth, physiological and root traits. Suillus luteus and Populus involutus each formed ectomycorrhizal associations with the seedlings. Seedling height, ground diameter, biomass, and leaf area were significantly greater after treatment with ECMF than in the non-inoculated controls. Treatment improved all physiological and root variables assessed (chlorophylls and carotenoids, cellulose, and soluble sugars and proteins; root length, surface area, projected area, mean diameter, volume, number of root tips). Seedlings inoculated with S. luteus outperformed those inoculated with P. involutus.
Ectomycorrhizal association / Suillus luteus / Paxillus involutus / Populus davidiana × P. bolleana / Growth promotion / Root system scan
[1] | Aasamaa K, Heinsoo K, Holm B (2010) Biomass production, water use and photosynthesis of Salix clones grown in a wastewater purification system. Biomass Bioenergy 34(6):897–905. https://doi.org/10.1016/j.biombioe.2010.01.035 |
[2] | Ashford AE, Peterson CA, Carpenter JL, Cairney JWG, Allaway WG (1988) Structure and permeability of the fungal sheath in the Pisonia mycorrhiza. Protoplasma 147(2):149–161. https://doi.org/10.1007/BF01403343 |
[3] | Berta G, Trotta A, Fusconi A, Hooker JE, Munro M, Atkinson D, Giovannetti M, Morini S, Fortuna P, Tisserant B, Gianinazzi-Pearson V, Gianinazzi S (1995) Arbuscular mycorrhizal induced changes to plant growth and root system morphology in Prunus cerasifera. Tree Physiol 15(5):281–293. https://doi.org/10.1093/treephys/15.5.281 |
[4] | Blom JM, Vannini A, Vettraino AM, Hale MD, Godbold DL (2009) Ectomycorrhizal community structure in a healthy and a Phytophthora-infected chestnut (Castanea sativa Mill.) stand in central Italy. Mycorrhiza 20(1):25–38. https://doi.org/10.1007/s00572-009-0256-z |
[5] | Chen L, Swenson NG, Ji NN, Mi XC, Ren HB, Guo LD, Ma KP (2019) Differential soil fungus accumulation and density dependence of trees in a subtropical forest. Science 366(6461):124–128. https://doi.org/10.1126/science.aau1361 |
[6] | Das D, Paries M, Hobecker K, Gigl M, Dawid C, Lam HM, Zhang JH, Chen MX, Gutjahr C (2022) Phosphate starvation response transcription factors enable arbuscular mycorrhiza symbiosis. Nat Commun 13(1):477. https://doi.org/10.1038/s41467-022-27976-8 |
[7] | de Vries FT, Griffiths RI, Knight CG, Nicolitch O, Williams A (2020) Harnessing rhizosphere microbiomes for drought-resilient crop production. Science 368(6488):270–274. https://doi.org/10.1126/science.aaz5192 |
[8] | Diagne N, Ngom M, Djighaly PI, Fall D, Hocher V, Svistoonoff S (2020) Roles of arbuscular mycorrhizal fungi on plant growth and performance: importance in biotic and abiotic stressed regulation. Diversity 12(10):370. https://doi.org/10.3390/d12100370 |
[9] | Dighton J, White JF (2017) The fungal community: its organization and role in the ecosystem. CRC Press, Boca Raton, pp 25–30. https://doi.org/10.1201/9781315119496 |
[10] | Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104(7):1263–1280. https://doi.org/10.1093/aob/mcp251 |
[11] | Feng G, Zhang FS, Li XL, Tian CY, Tang C, Rengel Z (2002) Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza 12(4):185–190. https://doi.org/10.1007/s00572-002-0170-0 |
[12] | Gao FJ (2006) Plant physiology test guide. Higher Education Press, Beijing, pp 74–144 |
[13] | Genre A, Lanfranco L, Perotto S, Bonfante P (2020) Unique and common traits in mycorrhizal symbioses. Nat Rev Microbiol 18(11):649–660. https://doi.org/10.1038/s41579-020-0402-3 |
[14] | Gong MG, Tang M, Chen H, Zhang QM, Feng XX (2013) Effects of two Glomus species on the growth and physiological performance of Sophora davidii seedlings under water stress. New for 44(3):399–408. https://doi.org/10.1007/s11056-012-9349-1 |
[15] | Huang Y, Liu H, Jia ZC, Fang Q, Luo KM (2012) Combined expression of antimicrobial genes (Bbchit1 and LJAMP2) in transgenic poplar enhances resistance to fungal pathogens. Tree Physiol 32(10):1313–1320. https://doi.org/10.1093/treephys/tps079 |
[16] | Karti PH, Astuti DA, Nofyangtri S (2012) The role of arbuscular mycorrhizal fungi in enhancing productivity, nutritional quality, and drought tolerance mechanism of Stylosanthes seabrana. Med Pet 35(1):67–72. https://doi.org/10.5398/medpet.2012.35.1.67 |
[17] | Kumar A, Dames JF, Gupta A, Sharma S, Gilbert JA, Ahmad P (2015) Current developments in arbuscular mycorrhizal fungi research and its role in salinity stress alleviation: a biotechnological perspective. Crit Rev Biotechnol 35(4):461–474. https://doi.org/10.3109/07388551.2014.899964 |
[18] | Lehto T, Zwiazek JJ (2011) Ectomycorrhizas and water relations of trees: a review. Mycorrhiza 21(2):71–90. https://doi.org/10.1007/s00572-010-0348-9 |
[19] | Liu D (2021) Managing both internal and foreign affairs—a PHR-centered gene network regulates plant-mycorrhizal symbiosis. Chin Bull Bot 56(6):647–650. https://doi.org/10.11983/CBB21177 |
[20] | Liu T, Sheng M, Wang CY, Chen H, Li Z, Tang M (2015) Impact of arbuscular mycorrhizal fungi on the growth, water status, and photosynthesis of hybrid poplar under drought stress and recovery. Photosynthetica 53(2):250–258. https://doi.org/10.1007/s11099-015-0100-y |
[21] | Liu YL, Xin ZB, Li ZS, Keyimu M (2020) Climate effect on the radial tree growth of Populus simonii in Northwest of Hebei for last four decades. Acta Ecol Sin 40(24):9108–9119. https://doi.org/10.5846/stxb202003040406 |
[22] | Ma CX, Zhang Y, Kong DX, Gao Y, Xu LJ, Meng W (2024) Analysis of fungi from Parametarhizium on improving the growth of mung beans under salt and alkali stress. Bull Bot Res 44(2):239–247. https://doi.org/10.7525/j.issn.1673-5102.2024.02.009 |
[23] | Mathur N, Vyas A (2000) Influence of arbuscular mycorrhizae on biomass production, nutrient uptake and physiological changes in Ziziphus mauritiana Lam. under water stress. J Arid Environ 45(3):191–195. https://doi.org/10.1006/jare.2000.0644 |
[24] | Moran JF, Becana M, Iturbe-Ormaetxe I, Frechilla S, Klucas RV, Aparicio-Tejo P (1994) Drought induces oxidative stress in pea plants. Planta 194(3):346–352. https://doi.org/10.1007/BF00197534 |
[25] | Nasir RW, Tanweer HM (2014) Role of poplars in agroforestry systems in India. New York Science Journal 7(2):50–56. https://doi.org/10.7537/marsnys070214.06 |
[26] | Niu S (1992) Object quality analysis. China Agricultural Press, Beijing, pp 62–65 |
[27] | Podila GK, Sreedasyam A, Muratet MA (2009) Populus rhizosphere and the ectomycorrhizal interactome. Crit Rev Plant Sci 28(5):359–367. https://doi.org/10.1080/07352680903241220 |
[28] | Qi JY, Deng JF, Yin DC, Cai LX, Liu DP, Zhang LL, Lin M (2019) Effects of inoculation of exogenous mycorrhizal fungi on the antioxidant and root configuration enzyme activity of Pinus tabulaeformis seedlings. Acta Ecol Sin 39(8):2826–2832. https://doi.org/10.5846/stxb201805091027 |
[29] | Quoreshi AM, Khasa DP (2008) Effectiveness of mycorrhizal inoculation in the nursery on root colonization, growth, and nutrient uptake of aspen and balsam poplar. Biomass Bioenergy 32(5):381–391. https://doi.org/10.1016/j.biombioe.2007.10.010 |
[30] | Richardson AE, Barea JM, McNeill AM, Prigent CC (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321(1–2):305–339 |
[31] | Rooney DC, Killham K, Bending GD, Baggs E, Weih M, Hodge A (2009) Mycorrhizas and biomass crops: opportunities for future sustainable development. Trends Plant Sci 14(10):542–549. https://doi.org/10.1016/j.tplants.2009.08.004 |
[32] | Scheublin TR, Sanders IR, Keel C, van der Meer JR (2010) Characterisation of microbial communities colonising the hyphal surfaces of arbuscular mycorrhizal fungi. ISME J 4(6):752–763. https://doi.org/10.1038/ismej.2010.5 |
[33] | Sheng M, Tang M, Chen H, Yang BW, Zhang FF, Huang YH (2008) Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza 18(6–7):287–296. https://doi.org/10.1007/s00572-008-0180-7 |
[34] | Sheng M, Tang M, Zhang FF, Huang YH (2011) Influence of arbuscular mycorrhiza on organic solutes in maize leaves under salt stress. Mycorrhiza 21(5):423–430. https://doi.org/10.1007/s00572-010-0353-z |
[35] | Smith FA, Grace EJ, Smith SE (2009) More than a carbon economy: nutrient trade and ecological sustainability in facultative arbuscular mycorrhizal symbioses. New Phytol 182(2):347–358. https://doi.org/10.1111/j.1469-8137.2008.02753.x |
[36] | Song RQ, Wang F, Ji RQ, Qi JY (2007) Effect of ectomycorrhizal fungi on the seedlings growth of Korea spruce. Acta Microbiol Sin 47(6):1091–1094. https://doi.org/10.13343/j.cnki.wsxb.2007.06.025 |
[37] | Szuba A, Marczak ?, Ratajczak I, Kasprowicz-Malu?ki A, Mucha J (2020) Integrated proteomic and metabolomic analyses revealed molecular adjustments in Populus × canescens colonized with the ectomycorrhizal fungus Paxillus involutus, which limited plant host growth. Environ Microbiol 22(9):3754–3771. https://doi.org/10.1111/1462-2920.15146 |
[38] | Tang M, Zhang RQ, Chen H, Zhang HH, Tian ZQ (2008) Induced hydrolytic enzymes of ectomycorrhizal fungi against pathogen Rhizoctonia solani. Biotechnol Lett 30(10):1777–1782. https://doi.org/10.1007/s10529-008-9760-z |
[39] | Wang C, Xie HX, Liu RJ, Li W, Guo SX, Li M (2021) Salt tolerance of watermelon plants through AM fungus adjusting root architecture and mineral element balance. Mycosystema 40(10):2800–2810. https://doi.org/10.13346/j.mycosystema.210222 |
[40] | Wang JX, Zhang HQ, Gao J, Zhang Y, Liu YQ, Tang M (2021b) Effects of ectomycorrhizal fungi (Suillus variegatus) on the growth, hydraulic function, and non-structural carbohydrates of Pinus tabulaeformis under drought stress. BMC Plant Biol 21(1):171. https://doi.org/10.1186/s12870-021-02945-3 |
[41] | Wang XF, Hao LF, Hao JX, Hao WY, Bao HG, Bai SL (2021) Growth responses of Pinus sylvestris var. mongolica seedlings under simulated nitrogen deposition and different inoculation of ectomycorrhizal fungi treatments. Bull Bot Res 41(1):138–144. https://doi.org/10.7525/j.issn.1673-5102.2021.01.017 |
[42] | Xu N, Song FQ, Fan XX, Sui X, Chang W (2021) Effects of salt stress on growth characteristics of arbuscular mycorrhizal Elaeagnus angustifolia seedlings. J Northeast For Univ 49(6):29–33. https://doi.org/10.13759/j.cnki.dlxb.2021.06.007 |
[43] | Yang YR, Tang M, Sulpice R, Chen H, Tian S, Ban YH (2014) Arbuscular mycorrhizal fungi alter fractal dimension characteristics of Robinia pseudoacacia L. seedlings through regulating plant growth, leaf water status, photosynthesis, and nutrient concentration under drought stress. J Plant Growth Regul 33(3):612–625. https://doi.org/10.1007/s00344-013-9410-0 |
[44] | Yin DC, Deng X, Chet I, Song RQ (2014) Physiological responses of Pinus sylvestris var. mongolica seedlings to the interaction between Suillus luteus and Trichoderma virens. Curr Microbiol 69(3):334–342. https://doi.org/10.1007/s00284-014-0589-5 |
[45] | Yin DC, Yang LB, Deng X, Chet I, Song RQ (2015) How Trichoderma virens affects growth indicators, physiological and biochemical parameters of Pinus sylvestris var. mongolica seedlings. J Beijing For Univ 37(1):78–83. https://doi.org/10.13332/j.cnki.jbfu.2015.01.012 |
[46] | Yin DC, Song RQ, Qi JY, Deng X (2018) Ectomycorrhizal fungus enhances drought tolerance of Pinus sylvestris var. mongolica seedlings and improves soil condition. J For Res 29(6):1775–1788. https://doi.org/10.1007/s11676-017-0583-4 |
[47] | Yin DC, Halifu S, Song RQ, Qi JY, Deng X, Deng JF (2020) Effects of an ectomycorrhizal fungus on the growth and physiology of Pinus sylvestris var. mongolica seedlings subjected to saline–alkali stress. J For Res 31(3):781–788. https://doi.org/10.1007/s11676-019-01007-7 |
[48] | Yin DC, Wang HL, Qi JY (2021) The enhancement effect of calcium ions on ectomycorrhizal fungi-mediated drought resistance in Pinus sylvestris var. mongolica. J Plant Growth Regul 40(4):1389–1399. https://doi.org/10.1007/s00344-020-10197-y |
[49] | Zai XM, Zhu SN, Qin P, Wang XY, Che L, Luo FX (2012) Effect of Glomus mosseae on chlorophyll content, chlorophyll fluorescence parameters, and chloroplast ultrastructure of beach plum (Prunus maritima) under NaCl stress. Photosynthetica 50(3):323–328. https://doi.org/10.1007/s11099-012-0035-5 |
[50] | Zhai SS, Ding GJ, Wang Y, Luo XM, Li M (2015) Effects of Suillus luteus on root architecture of Pinus massoniana. J For Enviro 35(3):243–248. https://doi.org/10.13324/j.cnki.jfcf.2015.03.010 |
[51] | Zhang YX, Bi YL, Shen HH, Zhang LJ (2020) Arbuscular mycorrhizal fungi enhance sea buckthorn growth in coal mining subsidence areas in Northwest China. J Microbiol Biotechnol 30(6):848–855. https://doi.org/10.4014/jmb.1907.07007 |
[52] | Zheng J, Hu MJ, Guo YP (2008) Regulation of photosynthesis by light quality and its mechanism in plants. Chin J Appl Ecol 19(7):1619–1624. https://doi.org/10.13287/j.1001-9332.2008.0264 |
/
〈 | 〉 |