Topographic and climatic effects on Pinus halepensis s.l. growth at its drought tolerance margins under climatic change

Dimitrios Sarris1,2(), Dimitrios Christodoulakis3

PDF
Journal of Forestry Research ›› 2024, Vol. 35 ›› Issue (1) : 102. DOI: 10.1007/s11676-024-01755-1

Topographic and climatic effects on Pinus halepensis s.l. growth at its drought tolerance margins under climatic change

  • Dimitrios Sarris1,2(), Dimitrios Christodoulakis3
Author information +
History +

Abstract

Under global warming, drought will reduce productivity of Pinus halepensis s.l. (subspecies halepensis and brutia) and cause a retreat from its rear edge distribution (latitudinal/elevational) in the Mediterranean. To test whether topography can influence this scenario, we studied for approximately 40 years the growth of six natural pine stands in water-limited habitats on the islands of Zakinthos and Samos (eastern Mediterranean Greece), and determined the critical moisture sources that drove pine growth. Dominant pines were selected with no permanent water sources under contrasting moisture conditions created by topography (“wet”-gulley/valley vs. “dry”-upslope habitats). The responses of P. halepensis s.l. to drought under a moderate and a worst case scenario were tested, projected under global warming (approx. − 25% and 40% in annual precipitation compared to 1961–1990 average). Our results show that “wet” habitat pines had higher productivity under normal to wet climate. However, the more precipitation declined, “wet” habitat tree growth was reduced at a significantly faster rate, but also showed a faster recovery, once rainfall returned. Thus, Pinus halepensis s.l. populations in gullies/valleys, may be more drought resilient and less likely to retreat towards higher elevation/latitudes under global warming, compared to pines on dry upslope sites. Under moderate drought, both ecosystems relied on deeper moisture pools supplied by rainfall of the previous 3–6 years (including the year of growth). However, valley/gully habitat pines on significantly deeper soils (and probably on deeper heavily weathered bedrock), appeared to utilize surface moisture from winter/spring rainfall more efficiently for survival and recovery. Thus, deep soils may provide the key “buffer” for pine survival in such ecosystems that could act as potential refugia for P. halepensis s.l. under climate change.

Keywords

Tree rings / Refugia / Rooting depth / Soil depth / Mediterranean

Cite this article

Download citation ▾
Dimitrios Sarris, Dimitrios Christodoulakis. Topographic and climatic effects on Pinus halepensis s.l. growth at its drought tolerance margins under climatic change. Journal of Forestry Research, 2024, 35(1): 102 https://doi.org/10.1007/s11676-024-01755-1

References

[1]
Allen CD, Breshears DD (1998) Drought-induced shift of a forest-woodland ecotone: rapid landscape response to climate variation. Proc Natl Acad Sci USA 95(25):14839–14842. https://doi.org/10.1073/pnas.95.25.14839
[2]
Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim JH, Allard G, Running SW, Semerci A, Cobb N (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259(4):660–684. https://doi.org/10.1016/j.foreco.2009.09.001
[3]
Améztegui A, Brotons L, Coll L (2010) Land-use changes as major drivers of mountain pine (Pinus uncinata Ram.) expansion in the Pyrenees. Glob Ecol Biogeogr 19(5):632–641. https://doi.org/10.1111/j.1466-8238.2010.00550.x
[4]
Améztegui A, Coll L, Brotons L, Ninot JM (2016) Land-use legacies rather than climate change are driving the recent upward shift of the mountain tree line in the Pyrenees. Glob Ecol Biogeogr 25(3):263–273. https://doi.org/10.1111/geb.12407
[5]
Balzan MV, Hassoun AER, Aroua N, Baldy V, Bou Dagher M, Branquinho C, Dutay J-C, El Bour M, Médail F, Mojtahid M, Morán-Ordó?ez A, Roggero PP, Rossi Heras S, Schatz B, Vogiatzakis IN, Zaimes GN, Ziveri P (2020) Ecosystems. In: Cramer W, Guiot J, Marini K (eds) Climate and environmental change in the mediterranean basin–Current situation and risks for the future first mediterranean assessment report. Union for the Mediterranean, Plan Bleu, UNEP/MAP, Marseille, pp 151. 10.5281/zenodo.4768833
[6]
Biondi F, Qeadan F (2008) A theory-driven approach to tree-ring standardization: defining the biological trend from expected basal area increment. Tree Ring Res 64(2):81–96. https://doi.org/10.3959/2008-6.1
[7]
Bledsoe CS, Allen MF, Southworth D (2014) Beyond mutualism: complex mycorrhizal interactions. In: Lüttge U, Beyschlag W, Cushman J (eds) Progress in botany. Springer, Heidelberg, pp 311–334. https://doi.org/10.1007/978-3-642-38797-5_10
[8]
Bodin J, Badeau V, Bruno E, Cluzeau C, Moisselin JM, Walther GR, Dupouey JL (2013) Shifts of forest species along an elevational gradient in Southeast France: climate change or stand maturation? J Veg Sci 24(2):269–283. https://doi.org/10.1111/j.1654-1103.2012.01456.x
[9]
Camarero JJ, Gazol A, Valeriano C, Pizarro M, González de Andrés E (2023) Topoclimatic modulation of growth and production of intra-annual density fluctuations in Juniperus thurifera. Dendrochronologia 82:126145. https://doi.org/10.1016/j.dendro.2023.126145
[10]
Chen XF, Chen JM, An SQ, Ju WM (2007) Effects of topography on simulated net primary productivity at landscape scale. J Environ Manage 85(3):585–596. https://doi.org/10.1016/j.jenvman.2006.04.026
[11]
Cherif S, Doblas-Miranda E, Lionello P, Borrego C, Giorgi F, Iglesias A, Jebari S, Mahmoudi E, Moriondo M, Pringault O, Rilov G, Somot S, Tsikliras A, Vila M, Zittis G (2020) Drivers of change. In: Cramer W, Guiot J, Marini K (eds) Climate and environmental change in the mediterranean basin—current situation and risks for the future. First Mediterranean Assessment Report. Union for the Mediterranean, Plan Bleu, UNEP/MAP, Marseille, France, p 128. https://doi.org/10.5281/zenodo.4768833
[12]
Christensen KI (1997) Gymnospermae. In: Strid A, Tan K (eds) Flora hellenica 1, K?nigstein, pp 1–17
[13]
Christmas MJ, Breed MF, Lowe AJ (2016) Constraints to and conservation implications for climate change adaptation in plants. Conserv Genet 17(2):305–320. https://doi.org/10.1007/s10592-015-0782-5
[14]
Daws MI, Mullins CE, Burslem DFRP, Paton SR, Dalling JW (2002) Topographic position affects the water regime in a semideciduous tropical forest in Panamá. Plant Soil 238(1):79–89. https://doi.org/10.1023/A:1014289930621
[15]
Dawson TE, Pate JS (1996) Seasonal water uptake and movement in root systems of Australian phraeatophytic plants of dimorphic root morphology: a stable isotope investigation. Oecologia 107(1):13–20. https://doi.org/10.1007/BF00582230
[16]
Dawson TE, Hahm WJ, Crutchfield-Peters K (2020) Digging deeper: what the critical zone perspective adds to the study of plant ecophysiology. New Phytol 226(3):666–671. https://doi.org/10.1111/nph.16410
[17]
Denslow JS (1995) Disturbance and diversity in tropical rain forests: the density effect. Ecol Appl 5(4):962–968. https://doi.org/10.2307/2269347
[18]
Dolph KL, Mori SR, Oliver WW (1995) Long-term response of old-growth stands to varying levels of partial cutting in the eastside pine type. West J Appl for 10(3):101–108. https://doi.org/10.1093/wjaf/10.3.101
[19]
Dorman M, Perevolotsky A, Sarris D, Svoray T (2015a) Amount vs. temporal pattern: on the importance of intra-annual climatic conditions on tree growth in a dry environment. J Arid Environ 118:65–68. https://doi.org/10.1016/j.jaridenv.2015.03.002
[20]
Dorman M, Perevolotsky A, Sarris D, Svoray T (2015b) The effect of rainfall and competition intensity on forest response to drought: lessons learned from a dry extreme. Oecologia 177(4):1025–1038. https://doi.org/10.1007/s00442-015-3229-2
[21]
Dorman M, Svoray T, Perevolotsky A, Moshe Y, Sarris D (2015c) What determines tree mortality in dry environments? A multi-perspective approach. Ecol Appl 25(4):1054–1071. https://doi.org/10.1890/14-0698.1
[22]
EUFORGEN (2009a) Distribution map of Alepo pine (Pinus halepensis). https://www.euforgen.org/species/pinus-halepensis/. Accessed 20 Aug 2021
[23]
EUFORGEN (2009b) Distribution map of Brutia pine (Pinus brutia). https://www.euforgen.org/species/pinus-brutia/. Accessed 20 Aug 2021
[24]
Fady B, Semerci H, Vendramin GG (2003) EUFORGEN Technical Guidelines for genetic conservation and use for Aleppo pine (Pinus halepensis) and Brutia pine (Pinus brutia). International Plant Genetic Resources Institute, Rome, p 6
[25]
Fensham RJ, Fairfax RJ (2007) Drought-related tree death of savanna eucalypts: species susceptibility, soil conditions and root architecture. J Veg Sci 18(1):71–80. https://doi.org/10.1658/1100-9233(2007)18[71:dtdose]2.0.co;2
[26]
Gazol A, Oliva J, Valeriano C, Colangelo M, Camarero JJ (2022) Mixed pine forests in a hotter and drier world: the great resilience to drought of Aleppo pine benefits it over other coexisting pine species. Front for Glob Change 5:899425. https://doi.org/10.3389/ffgc.2022.899425
[27]
Gea-Izquierdo G, Martin-Benito D, Cherubini P, Ca?ellas I (2009) Climate-growth variability in Quercus ilex L. West Iberian open woodlands of different stand density. Ann for Sci 66:802. https://doi.org/10.1051/forest/2009080
[28]
Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean Region. Glob Planet Change 63(2–3):90–104. https://doi.org/10.1016/j.gloplacha.2007.09.005
[29]
Govind A, Chen JM, Ju WM (2009) Spatially explicit simulation of hydrologically controlled carbon and nitrogen cycles and associated feedback mechanisms in a boreal ecosystem. J Geophys Res 14:G02006. https://doi.org/10.1029/2008JG000728
[30]
Guarín A, Taylor AH (2005) Drought triggered tree mortality in mixed conifer forests in Yosemite National Park, California, USA. For Ecol Manag 218(1–3):229–244. https://doi.org/10.1016/j.foreco.2005.07.014
[31]
Guiot J, Cramer W (2016) Climate change: The 2015 Paris agreement thresholds and Mediterranean basin ecosystems. Science 354(6311):465–468. https://doi.org/10.1126/science.aah5015
[32]
Haavik LJ, Stephen FM, Fierke MK, Salisbury VB, Leavitt SW, Billings SA (2008) Dendrochronological parameters of northern red oak (Quercus rubra L. (Fagaceae)) Infested With Red Oak Borer (Enaphalodes rufulus (Haldeman) (Coleoptera: Cerambycidae)). For Ecol Manag 255(5–6):1501–1509. https://doi.org/10.1016/j.foreco.2007.11.005
[33]
Helluy M, Prévosto B, Cailleret M, Fernandez C, Balandier P (2020) Competition and water stress indices as predictors of Pinus halepensis Mill. radial growth under drought. For Ecol Manag 460:117877. https://doi.org/10.1016/j.foreco.2020.117877
[34]
Hoerling M, Eischeid J, Perlwitz J, Quan XW, Zhang T, Pegion P (2012) On the increased frequency of Mediterranean drought. J Clim 25(6):2146–2161. https://doi.org/10.1175/jcli-d-11-00296.1
[35]
Huang W, Zhang LP, Furumi S, Muramatsu K, Daigo M, Li PX (2010) Topographic effects on estimating net primary productivity of green coniferous forest in complex terrain using Landsat data: a case study of Yoshino Mountain, Japan. Int J Remote Sens 31(11):2941–2957. https://doi.org/10.1080/01431160903140829
[36]
Innes JL (1992) Forest decline. Prog Phys Geogr 16:1–64. https://doi.org/10.1177/030913339201600101
[37]
IPCC (2007) Climate change 2007: The physical science basis contribution of working group I. In: Solomon S, Qin D, Manning M, Chen Z et al (eds) Fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge
[38]
IPCC (2023) Weather and climate extreme events in a changing climate. In: Climate change 2021—the physical science basis: working group I contribution to the sixth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge. pp 1513–1766. https://doi.org/10.1017/9781009157896.013
[39]
Jenkins MA, Pallardy SG (1995) The influence of drought on red oak group species growth and mortality in the Missouri Ozarks. Can J for Res 25(7):1119–1127. https://doi.org/10.1139/x95-124
[40]
Jiao T, Williams CA, De Kauwe MG, Schwalm CR, Medlyn BE (2021) Patterns of post-drought recovery are strongly influenced by drought duration, frequency, post-drought wetness, and bioclimatic setting. Glob Chang Biol 27(19):4630–4643. https://doi.org/10.1111/gcb.15788
[41]
Kazakis G, Ghosn D, Vogiatzakis IN, Papanastasis VP (2007) Vascular plant diversity and climate change in the alpine zone of the Lefka Ori, Crete. Biodivers Conserv 16(6):1603–1615. https://doi.org/10.1007/s10531-006-9021-1
[42]
Keenan T, Maria Serra J, Lloret F, Ninyerola M, Sabate S (2011) Predicting the future of forests in the Mediterranean under climate change, with niche- and process-based models: CO2 matters! Glob Change Biol 17(1):565–579. https://doi.org/10.1111/j.1365-2486.2010.02254.x
[43]
Klein Tank AMG, Wijngaard JB, K?nnen GP, B?hm R, Demarée G, Gocheva A, Mileta M, Pashiardis S, Hejkrlik L, Kern-Hansen C, Heino R, Bessemoulin P, Müller-Westermeier G, Tzanakou M, Szalai S, Pálsdóttir T, Fitzgerald D, Rubin S, Capaldo M, Maugeri M, Leitass A, Bukantis A, Aberfeld R, van Engelen AFV, Forland E, Mietus M, Coelho F, Mares C, Razuvaev V, Nieplova E, Cegnar T, Antonio López J, Dahlstr?m B, Moberg A, Kirchhofer W, Ceylan A, Pachaliuk O, Alexander LV, Petrovic P (2002) Daily dataset of 20th-century surface air temperature and precipitation series for the European Climate Assessment. Int J Climatol 22(12):1441–1453. https://doi.org/10.1002/joc.773
[44]
Klos PZ, Goulden ML, Riebe CS, Tague CL, O’Geen AT, Flinchum BA, Safeeq M, Conklin MH, Hart SC, Berhe AA, Hartsough PC, Holbrook WS, Bales RC (2018) Subsurface plant-accessible water in mountain ecosystems with a Mediterranean climate. Wires Water 5(3):e1277. https://doi.org/10.1002/wat2.1277
[45]
K?rner C, Sarris D, Christodoulakis D (2005) Long-term increase in climatic dryness in the East-Mediterranean as evidenced for the island of Samos. Reg Environ Change 5(1):27–36. https://doi.org/10.1007/s10113-004-0091-x
[46]
Lanza NL, Meyer GA, Okubo CH, Newsom HE, Wiens RC (2010) Evidence for debris flow gully formation initiated by shallow subsurface water on Mars. Icarus 205(1):103–112. https://doi.org/10.1016/j.icarus.2009.04.014
[47]
Laurent M, Antoine N, Jo?l G (2003) Effects of different thinning intensities on drought response in Norway spruce (Picea abies (L.) Karst). For Ecol Manag 183(1–3):47–60. https://doi.org/10.1016/S0378-1127(03)00098-7
[48]
Lenoir J, Gégout JC, Marquet PA, de Ruffray P, Brisse H (2008) A significant upward shift in plant species optimum elevation during the 20th century. Science 320(5884):1768–1771. https://doi.org/10.1126/science.1156831
[49]
Levani? T, C?ter M, McDowell NG (2011) Associations between growth, wood anatomy, carbon isotope discrimination and mortality in a Quercus robur forest. Tree Physiol 31(3):298–308. https://doi.org/10.1093/treephys/tpq111
[50]
Linares JC, Tíscar PA (2011) Buffered climate change effects in a Mediterranean pine species: range limit implications from a tree-ring study. Oecologia 167(3):847–859. https://doi.org/10.1007/s00442-011-2012-2
[51]
Liphschitz N, Lev-Yadun S, Rosen E, Waisel Y (1984) The annual rhythm of activity of the lateral meristems (cambium and phellogen) in Pinus halepensis Mill. and Pinus pinea L. IAWA J 5(4):263–274. https://doi.org/10.1163/22941932-90000413
[52]
Liu HY, Jiang ZH, Dai JX, Wu XC, Peng J, Wang HY, Meersmans J, Green SM, Quine TA (2019) Rock crevices determine woody and herbaceous plant cover in the Karst critical zone. Sci China Earth Sci 62(11):1756–1763. https://doi.org/10.1007/s11430-018-9328-3
[53]
Luo ZB, Fan J, Shao MA, Yang Q, Gan M (2023) Weathered bedrock converts hydrological processes in loess hilly-gully critical zone. J Hydrol 625:130112. https://doi.org/10.1016/j.jhydrol.2023.130112
[54]
Manrique-Alba à, Beguería S, Molina AJ, González-Sanchis M, Tomàs-Burguera M, del Campo AD, Colangelo M, Camarero JJ (2020) Long-term thinning effects on tree growth, drought response and water use efficiency at two Aleppo pine plantations in Spain. Sci Total Environ 728:138536. https://doi.org/10.1016/j.scitotenv.2020.138536
[55]
Mauri A, Di Leo M, de Rigo D, Caudullo G (2016) Pinus halepensis and Pinus brutia in Europe: distribution, habitat, usage and threats In: San-Miguel-Ayanz J, de Rigo D, Caudullo G, Houston Durrant T, Mauri A (eds) European Atlas of Forest Tree Species. Publications Office of the European Union, Luxembourg, p e0166b8+
[56]
Mazza G, Sarris D (2021) Identifying the full spectrum of climatic signals controlling a tree species’ growth and adaptation to climate change. Ecol Indic 130:108109. https://doi.org/10.1016/j.ecolind.2021.108109
[57]
Mazza G, Cutini A, Manetti MC (2014) Influence of tree density on climate-growth relationships in a Pinus pinaster Ait. forest in the northern mountains of Sardinia (Italy). Iforest 8(4):456–463. https://doi.org/10.3832/ifor1190-007
[58]
Mazza G, Sarris D, Chiavetta U, Ferrara RM, Rana G (2018) An intra-stand approach to identify intra-annual growth responses to climate in Pinus nigra subsp. laricio Poiret trees from southern Italy. For Ecol Manag 425:9–20. https://doi.org/10.1016/j.foreco.2018.05.029
[59]
McCormick EL, Dralle DN, Hahm WJ, Tune AK, Schmidt LM, Chadwick KD, Rempe DM (2021) Widespread woody plant use of water stored in bedrock. Nature 597(7875):225–229. https://doi.org/10.1038/s41586-021-03761-3
[60]
McElhinny C, Gibbons P, Brack C, Bauhus J (2005) Forest and woodland stand structural complexity: Its definition and measurement. For Ecol Manag 218(1–3):1–24. https://doi.org/10.1016/j.foreco.2005.08.034
[61]
Mitchell TD, Hulme M (2000) A country-by-country analysis of past and future warming rates Tyndall Centre Internal Report, No1, November UEA, Norwich
[62]
Moreno G, Cubera E (2008) Impact of stand density on water status and leaf gas exchange in Quercus ilex. For Ecol Manag 254(1):74–84. https://doi.org/10.1016/j.foreco.2007.07.029
[63]
Moreno JM, Morales-Molino C, Torres I, Arianoutsou M (2021) Fire in Mediterranean pine forests: past, present and future. In: Pines and their mixed forest ecosystems in the Mediterranean Basin. Springer International Publishing, pp 421–456. https://doi.org/10.1007/978-3-030-63625-8_21
[64]
Nardini A, Petruzzellis F, Marusig D, Tomasella M, Natale S, Altobelli A, Calligaris C, Floriddia G, Cucchi F, Forte E, Zini LC (2021) Water ‘on the rocks’: a summer drink for thirsty trees? New Phytol 229(1):199–212. https://doi.org/10.1111/nph.16859
[65]
Palombo C, Chirici G, Marchetti M, Tognetti R (2013) Is land abandonment affecting forest dynamics at high elevation in Mediterranean Mountains more than climate change? Plant biosystem. Int J Deal Aspects Plant Biol 147(1):1–11. https://doi.org/10.1080/11263504.2013.772081
[66]
Pe?uelas J, Boada M (2003) A global change-induced biome shift in the Montseny Mountains (NE Spain). Glob Change Biol 9(2):131–140. https://doi.org/10.1046/j.1365-2486.2003.00566.x
[67]
Pe?uelas J, Ogaya R, Boada M, Jump AS (2007) Migration, invasion and decline: changes in recruitment and forest structure in a warming-linked shift of European beech forest in Catalonia (NE Spain). Ecography 30(6):829–837. https://doi.org/10.1111/j.2007.0906-7590.05247.x
[68]
Pounds JA, Fogden MPL, Campbell JH (1999) Biological response to climate change on a tropical mountain. Nature 398:611–615. https://doi.org/10.1038/19297
[69]
Príncipe A, Matos P, Sarris D, Gaiola G, do Rosário L, Correia O, Branquinho C (2019) In Mediterranean drylands microclimate affects more tree seedlings than adult trees. Ecol Indic 106:105476. https://doi.org/10.1016/j.ecolind.2019.105476
[70]
Raz-Yaseef N, Rotenberg E, Yakir D (2010) Effects of spatial variations in soil evaporation caused by tree shading on water flux partitioning in a semi-arid pine forest. Agric for Meteor 150(3):454–462. https://doi.org/10.1016/j.agrformet.2010.01.010
[71]
Rempe DM, Dietrich WE (2018) Direct observations of rock moisture, a hidden component of the hydrologic cycle. Proc Natl Acad Sci USA 115(11):2664–2669. https://doi.org/10.1073/pnas.1800141115
[72]
Rinn F (2003) TSAP-Win professional, time series analysis and presentation for dendrochronology and related applications, Version 030 for Microsoft Windows, Quick Reference. Rinntech, Heidelberg
[73]
Rodriguez-Ramirez N, Santonja M, Baldy V, Ballini C, Montès N (2017) Shrub species richness decreases negative impacts of drought in a Mediterranean ecosystem. J Veg Sci 28(5):985–996. https://doi.org/10.1111/jvs.12558
[74]
Rose KL, Graham RC, Parker DR (2003) Water source utilization by Pinus jeffreyi and Arctostaphylos patula on thin soils over bedrock. Oecologia 134(1):46–54. https://doi.org/10.1007/s00442-002-1084-4
[75]
Sala OE, Chapin FS 3rd, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science 287(5459):1770–1774. https://doi.org/10.1126/science.287.5459.1770
[76]
Sarris D, Christodoulakis D, K?rner C (2007) Recent decline in precipitation and tree growth in the eastern Mediterranean. Glob Change Biol 13(6):1187–1200. https://doi.org/10.1111/j.1365-2486.2007.01348.x
[77]
Sarris D, Christodoulakis D, K?rner C (2011) Impact of recent climatic change on growth of low elevation eastern Mediterranean forest trees. Clim Change 106(2):203–223. https://doi.org/10.1007/s10584-010-9901-y
[78]
Sarris D, Siegwolf R, K?rner C (2013) Inter- and intra-annual stable carbon and oxygen isotope signals in response to drought in Mediterranean pines. Agric for Meteor 168:59–68. https://doi.org/10.1016/j.agrformet.2012.08.007
[79]
Sarris D, Mazza G (2021) Mediterranean pine root systems under drought. In: Ne’eman G, Osem Y (eds) Pines and their mixed forest ecosystems in the Mediterranean Basin. Managing Forest Ecosystems vol 38. Springer International Publishing, pp 129–140. https://doi.org/10.1007/978-3-030-63625-8_8
[80]
Sohn JA, Hartig F, Kohler M, Huss J, Bauhus J (2016) Heavy and frequent thinning promotes drought adaptation in Pinus sylvestris forests. Ecol Appl 26(7):2190–2205. https://doi.org/10.1002/eap.1373
[81]
Somot S, Sevault F, Déqué M, Crépon M (2008) 21st century climate change scenario for the Mediterranean using a coupled atmosphere–ocean regional climate model. Glob Planet Change 63(2–3):112–126. https://doi.org/10.1016/j.gloplacha.2007.10.003
[82]
Stephenson NL (1990) Climatic control of vegetation distribution: the role of the water balance. Am Nat 135(5):649–670. https://doi.org/10.1086/285067
[83]
Szutu DJ, Papuga SA (2019) Year-round transpiration dynamics linked with deep soil moisture in a warm desert shrubland. Water Resour Res 55(7):5679–5695. https://doi.org/10.1029/2018wr023990
[84]
Thuiller W (2003) BIOMOD–optimizing predictions of species distributions and projecting potential future shifts under global change. Glob Change Biol 9(10):1353–1362. https://doi.org/10.1046/j.1365-2486.2003.00666.x
[85]
Vennetier M, Ripert C, Rathgeber C (2018) Autecology and growth of Aleppo pine (Pinus halepensis Mill.): a comprehensive study in France. For Ecol Manag 413:32–47. https://doi.org/10.1016/j.foreco.2018.01.028
[86]
Veuillen L, Prévosto B, Alfaro-Sánchez R, Badeau V, Battipaglia G, Beguería S, Bravo F, Boivin T, Camarero JJ, ?ufar K, Davi H, De Luis M, Del Campo A, Del Rio M, Di Filippo A, Dorman M, Durand-Gillmann M, Ferrio JP, Gea-Izquierdo G, González-Sanchis M, Granda E, Guibal F, Gutierrez E, Helluy M, El Khorchani A, Klein T, Levillain J, Linares JC, Manrique-Alba A, Martinez Vilalta J, Molina AJ, Moreno-Gutiérrez C, Nicault A, Olivar J, Papadopoulos A, Perevolotsky A, Rathgeber C, Ribas M, Ripullone F, Ruano I, Saintonge FX, Sánchez-Salguero R, Sarris D, Serra-Maluquer X, Svoray T, Tallieu C, Valor T, Vennetier M, Voltas J, Cailleret M (2023a) Pre- and post-drought conditions drive resilience of Pinus halepensis across its distribution range. Agric for Meteor 339:109577. https://doi.org/10.1016/j.agrformet.2023.109577
[87]
Veuillen L, Prévosto B, Zeoli L, Pichot C, Cailleret M (2023b) Pinus halepensis and P. brutia provenances present similar resilience to drought despite contrasting survival, growth, cold tolerance and stem quality: Insights from a 45 year-old common garden experiment. For Ecol Manag 544:121146. https://doi.org/10.1016/j.foreco.2023.121146
[88]
Vicente-Serrano SM, Lasanta T, Gracia C (2010) Aridification determines changes in forest growth in Pinus halepensis forests under semiarid Mediterranean climate conditions. Agric for Meteor 150(4):614–628. https://doi.org/10.1016/j.agrformet.2010.02.002
[89]
Waring B, Neumann M, Prentice IC, Adams M, Smith P, Siegert M (2020) Forests and decarbonization–roles of natural and planted forests. Front for Glob Change 3:58. https://doi.org/10.3389/ffgc.2020.00058
[90]
Wyckoff PH, Bowers R (2010) Response of the prairie–forest border to climate change: impacts of increasing drought may be mitigated by increasing CO2. J Ecol 98(1):197–208. https://doi.org/10.1111/j.1365-2745.2009.01602.x
[91]
Xu SY, Peddle DR, Coburn CA, Kienzle S (2008) Sensitivity of a carbon and productivity model to climatic, water, terrain, and biophysical parameters in a Rocky Mountain watershed. Can J Remote Sens 34(3):245–258. https://doi.org/10.5589/m08-029
[92]
Zhang Y, Keenan TF, Zhou S (2021) Exacerbated drought impacts on global ecosystems due to structural overshoot. Nat Ecol Evol 5(11):1490–1498. https://doi.org/10.1038/s41559-021-01551-8
PDF

Accesses

Citations

Detail

Sections
Recommended

/