Changes in climatic conditions drive variations in arbuscular mycorrhizal fungi diversity and composition in semi-arid oak forests

Nahid Jafarian1, Javad Mirzaei1(), Reza Omidipour2, Yahya Kooch3

PDF
Journal of Forestry Research ›› 2024, Vol. 35 ›› Issue (1) : 94. DOI: 10.1007/s11676-024-01744-4

Changes in climatic conditions drive variations in arbuscular mycorrhizal fungi diversity and composition in semi-arid oak forests

  • Nahid Jafarian1, Javad Mirzaei1(), Reza Omidipour2, Yahya Kooch3
Author information +
History +

Abstract

Arbuscular mycorrhizal fungi (AMF) play a vital role in plant productivity and ecosystem functions. However, their responses to abiotic factors (i.e., climate, physiography, and soil properties) are unknown, especially across climatic gradients and slope aspects in arid and semi-arid ecosystems. In this study, using 60 composite soil samples, direct and indirect effects of climate factors and slope aspects on AMF diversity, composition and spore density were studied. The findings indicate that climate has a more direct influence on soil properties ( P < 0.001) in comparison to slope aspect ( P = 0.449). In contrast, climate significantly affected AMF diversity and composition, with the highest diversity in dryer areas. Soil pH had the highest correlation with different facets of AMF diversity. Structural equation modeling (SEM) indicated that only a small part of the variation in AMF diversity and spore density could be explained by climate characteristics, slope aspect and soil properties. Based on SEM results, climate was the most important determinant of AMF diversity and spore density; slope aspect had a less critical role. The outputs suggest that variations in AMF diversity are derived by the direct effects of climate and the indirect effect of soil chemical properties. In addition, with increasing dryness, sporulation and AMF diversity increased.

Keywords

AMF diversity and composition / Physiographic factors / Semi-arid ecosystems / Zagros forest

Cite this article

Download citation ▾
Nahid Jafarian, Javad Mirzaei, Reza Omidipour, Yahya Kooch. Changes in climatic conditions drive variations in arbuscular mycorrhizal fungi diversity and composition in semi-arid oak forests. Journal of Forestry Research, 2024, 35(1): 94 https://doi.org/10.1007/s11676-024-01744-4

References

[1]
Abbot LK, Robson AD (1991) Factors influence the occurrence of vesicular–arbuscular mycorrhizas. Agric Ecosys Environ 35:121–150. https://doi.org/10.1016/0167-8809(91)90048-3
[2]
Adenan S, Oja J, Alatalo JM, Shraim AM, Alsafran M, Tedersoo L, Ahmed T (2021) Diversity of arbuscular mycorrhizal fungi and its chemical drivers across dryland habitats. Mycorrhiza 31:685–697. https://doi.org/10.1007/s00572-021-01052-3
[3]
Alef K, Nannipieri P (1995) Methods in applied soil microbiology and biochemistry. Academic Press, p 576. https://doi.org/10.1016/B978-0-12-513840-6.X5014-9
[4]
Alguacil MM, Torrecillas E, Lozano Z, Torres MP, Roldán A (2014) Prunus persica crop management differentially promotes arbuscular mycorrhizal fungi diversity in a tropical agro-ecosystem. PLoS ONE 9(2):e88454. https://doi.org/10.1371/journal.pone.0088454
[5]
Aminian Nasab P, Sedaqhati E, Hosseini S, Saberi Riseh R (2021) Investigation of climate, soil physico-chemical properties and host on arbuscular mycorrhizal fungi activity in Rafsanjan. Biol Con Pes Plant Dis 9(2):216–197. https://doi.org/10.22059/JBIOC.2022.327964.308
[6]
Anderson JP, Domsch KH (1978) A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biol Biochem 10(3):215–221. https://doi.org/10.1016/0038-0717(78)90099-8
[7]
Anderson MJ (2014) Permutational multivariate analysis of variance (PERMANOVA). Wiley statsref: statistics reference online, pp 1–15.
[8]
Augé RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11(1):3–42. https://doi.org/10.1007/s005720100097
[9]
Bainard LD, Koch AM, Gordon AM (2011) Influence of trees on the spatial structure of arbuscular mycorrhizal communities in a temperate tree-based intercropping system. Agric Ecosyst Environ 144:13–20. https://doi.org/10.1016/j.agee.2011.07.014
[10]
Bento RA, de Novais CB, Saggin-Júnior OJ, de Oliveira LA, Sampaio PDTB (2023) Pioneer tree Bellucia imperialis (Melastomataceae) from central Amazon with seedlings highly dependent on arbuscular mycorrhizal fungi. J Fungi 9(5):540. https://doi.org/10.3390/jof9050540
[11]
Bordolo A, Nath PC, Shukla AK (2015) Distribution of arbuscular mycorrhizal fungi associated with different land use systems of Arunachal Pradesh of Eastern Himalayan region. World J Microbiol Biotechnol 10:1587–1593. https://doi.org/10.1007/s11274-015-1909-z
[12]
Bouyoucos GJ (1962) Hydrometer method improved for making particle size analysis of soils. Agron J 54:464–465. https://doi.org/10.2134/agronj1962.00021962005400050028x
[13]
Bremner JM, Mulvaney CS (1982) Nitrogen?Total. In: Page AL (ed) Methods of soil analysis: part 2 chemical and microbiological properties, pp 595–624. https://doi.org/10.2134/agronmonogr9.2.2ed.c31
[14]
Cala?a FJS, Bustamante MMC (2022) Richness of arbuscular mycorrhizal fungi (Glomeromycota) along a vegetation gradient of Brazilian Cerrado: responses to seasonality, soil types, and plant communities. Mycolo Prog 21:27. https://doi.org/10.1007/s11557-022-01785-1
[15]
Caravaca F, Alguacil M, Barea J, Roldán A (2005) Survival of inocula and native AM fungi species associated with shrubs in a degraded Mediterranean ecosystem. Soil Biol Biochem 37:227–233. https://doi.org/10.1016/j.soilbio.2004.06.019
[16]
Ceulemans T, Van GM, Jacquemyn H, Boeraeve M, Plue J, Saar L, Kasari L, Peeters G, van Acker K, Crauwels S (2019) Arbuscular mycorrhizal fungi in European grasslands under nutrient pollution. Glob Ecol Biogeogr 28:1796–1805. https://doi.org/10.1111/geb.12994
[17]
Chai YX, Jiang SJ, Guo WJ, Qin MS, Pan JB, Bahadur A, Shi GX, Luo JJ, Jin ZC, Liu YJ, Zhang Q, An LZ, Feng HY (2018) The effect of slope aspect on the phylogenetic structure of arbuscular mycorrhizal fungal communities in an alpine ecosystem. Soil Biol Biochem 126:103–113. https://doi.org/10.1016/j.soilbio.2018.08.016
[18]
Chaudhary VB, Cuenca G, Johnson NC (2018) Tropical temperate comparison of landscape-scale arbuscular mycorrhizal fungal species distributions. Divers Distrib 24:116–128. https://doi.org/10.1111/ddi.12664
[19]
Choudhary BK, Ali khan M, Saxena KG (2010) Mycorrhizal spore density in relation to physico-chemical properties of soil: a case study of central Himalaya. Maejo Int J Sci Technol 5:243–251. https://www.researchgate.net/publication/294292917
[20]
Chourasiya D, Gupta MM, Sahni S, Oehl F, Agnihotri R, Buade R, Maheshwari H, Prakash A, Sharma MP (2021) Unraveling the AM fungal community for understanding its ecosystem resilience to changed climate in agroecosystems. Symbiosis 84(3):295–310. https://doi.org/10.1007/s13199-021-00761-9
[21]
Da Silva IR, de Mello CMA, Neto RAF, da Silva DKA, Melo ALd, Oehl F, Maia LC (2014) Diversity of arbuscular mycorrhizal fungi along an environmental gradient in the Brazilian semiarid. Appl Soil Ecol 84:166–175. https://doi.org/10.1016/j.apsoil.2014.07.008
[22]
Dhumal KC, Shinde BP (2020) Impact of chemical properties of soil on spore density, colonization, and distribution of native arbuscular mycorrhizal fungi associated with Capsicum annuum L. J Appl Biolo Biotech 8(5):59–67. https://doi.org/10.7324/JABB.2020.80507
[23]
Dickie IA, Martinez-Garcia LB, Koele N, Grelet GA, Tylianakis JM, Peltzer DA, Richardson SJ (2013) Mycorrhizas and mycorrhizal fungal communities throughout ecosystem development. Plant Soil 367:11–39. https://www.jstor.org/stable/42952876
[24]
Dumbrell AJ, Nelson M, Helgason T, Dytham C, Fitter AH (2010) Relative roles of niche and neutral processes in structuring a soil microbial community. ISME J 4:337–345. https://doi.org/10.1038/ismej.2009.122
[25]
Dumbrell AJ, Ashton PD, Aziz N, Feng G, Nelson M, Dytham C, Fitter AH, Helgason T (2011) Distinct seasonal assemblages of arbuscular mycorrhizal fungi revealed by massively parallel pyrosequencing. New Phytol 190:794–804. https://doi.org/10.1111/j.1469-8137.2010.03636.x
[26]
Faggioli VS, Covacevich F, Grilli G, Lorenzon C, Aimetta B, Sagadin M, Cabello MN (2022) Environmental response of arbuscular mycorrhizal fungi under soybean cultivation at a regional scale. Mycorrhiza 32(5–6):425–438. https://doi.org/10.1007/s00572-022-01093-2
[27]
Fitzsimons MS, Miller RM, Jastrow JD (2008) Scale-dependent niche axes of arbuscular mycorrhizal fungi. Oecologia 158:117–127. https://doi.org/10.1007/s00442-008-1117-8
[28]
Gavito ME, Curtis PS, Mikkelsen TN, Jakobsen I (2000) Atmospheric CO2 and mycorrhiza effects on biomass allocation and nutrient uptake of nodulated pea (Pisum sativum L.) plants. J Exp Bot 51(352):1931–1938. https://doi.org/10.1093/jexbot/51.352.1931
[29]
Gutierrez-Jurado HA, Vivoni ER, Harrison JBJ, Guan H (2006) Ecohydrology of root zone water fluxes and soil development in complex semiarid rangelands. Hydrol Process 20:3289–3316. https://doi.org/10.1002/hyp.6333
[30]
Hodge A, Storer K (2015) Arbuscular mycorrhiza and nitrogen: implications for individual plants through to ecosystems. Plant Soil 386:1–19. https://doi.org/10.1007/s11104-014-2162-1
[31]
Holmgren M, Stapp P, Dickman CR, Gracia C, Graham S, Gutiérrez JR, Squeo FA (2006) Extreme climatic events shape arid and semiarid ecosystems. Fron Ecol Environ 4(2):87–95. https://doi.org/10.1890/1540-9295(2006)004[0087:ECESAA]2.0.CO;2
[32]
Hopkins JR, Bennett AE (2023) Spore traits mediate disturbance effects on arbuscular mycorrhizal fungal community composition and mutualisms. Ecology 104(5):e4016. https://doi.org/10.1002/ecy.4016
[33]
Hopmans JW, Qureshi AS, Kisekka I, Munns R, Grattan SR, Rengasamy P, Taleisnik E (2021) Critical knowledge gaps and research priorities in global soil salinity. Adv Agron 169:1–191. https://doi.org/10.1016/bs.agron.2021.03.001
[34]
Islam MN, Germida JJ, Walley FL (2019) Responses of arbuscular mycorrhizal fungal communities to soil core transplantation across Saskatchewan prairie climatic regions. Can J Soil Sci 100(1):81–96. https://doi.org/10.1139/cjss-2019-0053
[35]
Jafarian N, Mirzaei J, Omidipour R, Kooch Y (2023) Effects of micro-climatic conditions on soil properties along a climate gradient in oak forests, west of Iran: Emphasizing phosphatase and urease enzyme activity. CATENA 224:106960. https://doi.org/10.1016/j.catena.2023.106960
[36]
Ji B, Bever JD (2016) Plant preferential allocation and fungal reward decline with soil phosphorus enrichment: implications for mycorrhizal mutualism. Ecosphere 7(5):e01256. https://doi.org/10.1002/ecs2.1256
[37]
Ji B, Bentivenga SP, Casper BB (2012) Comparisons of AM fungal spore communities with the same hosts but different soil chemistries over local and geographic scales. Oecologia 168:187–197. https://doi.org/10.1007/s00442-011-2067-0
[38]
Johnson NC, Graham JD, Smith FA (1997) Functioning of mycorrhizal association along the mutualism–parasitism continuum. New Phytol 135:575–586. https://doi.org/10.1046/j.1469-8137.1997.00729.x
[39]
Kandeler E, Gerber H (1988) Short-term assay of soil urease activity using colorimetric determination of ammonium. Biol Fertil Soils 6:68. https://doi.org/10.1007/bf00257924
[40]
Kojima T, Jenkins S, Weerasekara A, Fan JW (2014) Arbuscular mycorrhizal diversity and function in grassland ecosystems. In: Mycorrhizal fungi: use in sustainable agriculture and land restoration, pp 149–169. https://doi.org/10.1007/978-3-662-45370-4_9
[41]
Legendre P, Legendre L (2012) Numerical ecology, 3rd edn. Elsevier, Amsterdam, p 853
[42]
Li XL, Zhang JL, George E, Marchner H (1997) Phosphorus acquisition from compacted soil by hyphae of a mycorrhizal fungus associated with red clover (Trifolium pratence). Can J Bot 75(5):723–729. https://doi.org/10.1139/b97-082
[43]
Li XL, Zhu TY, Peng F, Chen Q, Lin S, Christie P, Zhang JL (2015) Inner Mongolian steppe arbuscular mycorrhizal fungal communities respond more strongly to water availability than to nitrogen fertilization. Environ Microbiol 17(8):3051–3068. https://doi.org/10.1111/1462-2920.12931
[44]
Li C, Wang RH, Ning HS, Luo QH (2016) Changes in climate extremes and their impact on wheat yield in Tianshan Mountains region, northwest China. Environ Earth Sci 75:1–13. https://doi.org/10.1007/s12665-016-6030-6
[45]
Li ZJ, Li ZY, Tong XZ, Zhang JH, Dong L, Zheng Y, Ma WH, Zhao LQ, Wang LX, Wen L, Dang ZH, Tuvshintogtokh I, Liang CZ, Li FYH (2020) Climatic humidity mediates the strength of the species richness–biomass relationship on the Mongolian Plateau steppe. Sci Total Environ 718:137252. https://doi.org/10.1016/j.scitotenv.2020.137252
[46]
Limane A, Saadoun N (2022) Taxonomic diversity and morphological types of arbuscular mycorrhizal fungal communities symbiotic with Atlas pistachio along an aridity gradient in Algeria. Environ Exp Biol 20(2):119–126. https://doi.org/10.22364/eeb.20.12
[47]
Liu M, Zheng R, Bai SL, Bai YE, Wang JG (2016) Slope aspect influences arbuscular mycorrhizal fungus communities in arid ecosystems of the Daqingshan Mountains, Inner Mongolia, North China. Mycorrhiza 27:189–200. https://doi.org/10.1007/s00572-016-0739-7
[48]
Liu D, Liu GH, Chen L, Wang JT, Zhang LM (2017) Soil pH determines fungal diversity along an elevation gradient in Southwestern China. Sci China Life Sci 61(6):718–726. https://doi.org/10.1007/s11427-017-9200-1
[49]
Liu RC, Xiao ZY, Hashem A, AbdAllah EF, Wu QS (2021) Mycorrhizal fungal diversity and its relationship with soil properties in Camellia oleifera. Agriculture 11(6):470. https://doi.org/10.3390/agriculture11060470
[50]
Mahecha-Vásquez G, Sierra S, Posada R (2017) Diversity indices using arbuscular mycorrhizal fungi to evaluate the soil state in banana crops in Colombia. Appl Soil Ecol 109:32–39. https://doi.org/10.1016/j.apsoil.2016.09.017
[51]
Manimegalai V, Selvaraj T, Ambikapathy V (2011) Studies on isolation and identification of VAM fungi in Solanumviarum dunal of medicinal plants. Pelagia Res Library 2:621–628
[52]
Marshner H, Dell B (1996) Nutrient uptake in mycorrhizal symbiosis. Plant Soil 159:89–102
[53]
Medina A, Azcón R (2010) Effectiveness of the application of arbuscular mycorrhiza fungi and organic amendments to improve soil quality and plant performance under stress conditions. J Soil Sci Plant Nutr 10(3):354–372. https://doi.org/10.4067/S0718-95162010000100009
[54]
Menge JA, Steirle O, Bagyaraj DJ, Johnson ELV, Leonard RT (1978) Phosphorus concentration in plant responsible for inhibition of mycorrhizal infection. New Phytol 85:575–578. https://doi.org/10.1111/j.1469-8137.1978.tb01589.x
[55]
Mirzaei J, Moradi M (2017) Biodiversity of arbuscular mycorrhizal fungi in Amygdalus scoparia Spach plantations and a natural stand. J for Res 28(6):1209–1217. https://doi.org/10.1007/s11676-017-0392-9
[56]
Mirzaei J, Heydari M, Omidipour R, Jafarian N, Carcaillet C (2023) Decrease in soil functionalities and herbs’ diversity, but not that of arbuscular mycorrhizal fungi, linked to short fire interval in semi-arid oak forest ecosystem, west Iran. Plants 12(5):1112. https://doi.org/10.3390/plants12051112
[57]
Montiel-Rozas MDM, Lopez-Garcia A, Madejon P, Madejon E (2017) Native soil organic matter as a decisive factor to determine the arbuscular mycorrhizal fungal community structure in contaminated soils. Biol Fertil Soils 53:327–338. https://doi.org/10.1007/s00374-017-1181-5
[58]
Moradi Behbahani S, Moradi M, Basiri R, Mirzaei J (2017) Sand mining disturbances and their effects on the diversity of arbuscular mycorrhizal fungi in a riparian forest of Iran. J Arid Land 9(6):837–849. https://doi.org/10.1007/s40333-017-0028-0
[59]
Moreno G, Obrador JJ, Garcia A (2007) Impact of evergreen oaks on soil fertility and crop production in intercropped dehesas. Agric Ecosyst Environ 119:270–280. https://doi.org/10.1016/j.agee.2006.07.013
[60]
Mythili M, Ramalakshmi A (2022) Unraveling the distribution of AMF communities and their metabolites associated with soils of minor millets. Rhizosphere 21:100473. https://doi.org/10.1016/j.rhisph.2022.100473
[61]
Oehl F, Da Silva GA, Goto BT, Maia LC, Sieverding E (2011) Glomeromycota: two new classes and a new order. Mycotaxon 116(1):365–379. https://doi.org/10.5248/116.365
[62]
Ohlinger R (1996) Dehydrogenase activity with the substrate TTC. In: Schinner F, Kandeler E, Ohlinger R, Margesin R (eds) Methods in soil biology. Springer, Berlin, pp 246–265
[63]
Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’hara RB, Simpson GL, Solymos P, Stevens MHH, (2022) Vegan: community ecology package. R Package Version 2(5–7):2020
[64]
Oliverio AM, Bradford MA, Fierer N (2017) Identifying the microbial taxa that consistently respond to soil warming across time and space. Glob Chang Biol 23:2217–2129. https://doi.org/10.1111/gcb.13557
[65]
Olsen SR, Cole CV, Watanabe FS, Dean LA (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA Circular 939:1–19
[66]
Pellicone G, Caloiero T, Caloiero I (2019) The De Martonne aridity index in Calabria (Southern Italy). J Maps 15(2):788–796. https://doi.org/10.1080/17445647.2019.1673840
[67]
Pielou, (1966) The measurement of diversity in different types of biological collections. J Theoretic Biol 13:131–144. https://doi.org/10.1016/0022-5193(66)90013-0
[68]
Propster JR, Johnson NC (2015) Uncoupling the effects of phosphorus and precipitation on arbuscular mycorrhizas in the Serengeti. Plant Soil 388:21–34. https://doi.org/10.1007/s11104-014-2369-1
[69]
R Core Team (2021) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
[70]
Rasmussen PU, Hugerth LW, Blanchet FG, Andersson AF, Lindahl BD, Tack AJ (2018) Multiscale patterns and drivers of arbuscular mycorrhizal fungal communities in the roots and root-associated soil of a wild perennial herb. New Phytol 220(4):1248–1261. https://doi.org/10.1111/nph.15088
[71]
Razouk R, Kajji A (2015) Effect of arbuscular mycorrhizal fungi on water relations and growth of young plum trees under severe water stress conditions. Int J Plant Soil Sci 5(5):10. https://doi.org/10.9734/IJPSS/2015/15408
[72]
Ross JP (1980) Effect of nontreated field soil on sporulation of vesicular–arbuscular mycorrhizal fungi associated with soybean. J Phytopathol 70:100–105
[73]
Rotenberg E, Yakir D (2010) Contribution of semi-arid forests to the climate system. Science 327:451–454. https://doi.org/10.1126/science.1179998
[74]
Saco P, Willgoose G, Hancock G (2007) Eco-geomorphology of banded vegetation patterns in arid and semi-arid regions. Hydrol Earth Sci 11:1717–1730. https://doi.org/10.5194/hess-11-1717-2007
[75]
Schenck NC, Perez Y (1990) Manual for the identification of VA mycorrhizal fungi. Synergistic Publications, Gainesville
[76]
Schroder NV (1974) Temperature response of Endogone mycorrhiza on soybean roots. Mycologia 66(4):600–605. https://doi.org/10.1080/00275514.1974.12019651
[77]
Sedaghati E, Yazdanpanah M, Nadi M (2021) A review of taxonomic studies of arbuscular mycorrhizal fungi in Iran. Mycol Iran 8(2):15–30. https://doi.org/10.22043/MI.2022.358512.1215
[78]
Shannon CE, Weaver W (1963) The mathematical theory of communications. University of Illinois Press, Urbana, p 125
[79]
Simpson EH (1949) Measurement of diversity. Nature 163:688
[80]
Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic press, New York, p 694
[81]
Solís-Rodríguez URJ, Ramos-Zapata JA, Hernández-Cuevas L, Salinas-Peba L, Guadarrama P (2020) Arbuscular mycorrhizal fungi diversity and distribution in tropical low flooding forest in Mexico. Mycol Prog 19:195–204. https://doi.org/10.1007/s11557-019-01550-x
[82]
Soti P, Kariyat R, Racelis A (2023) Effective farm management promotes native AMF and benefit organic farming systems. Agric Ecosy Environ 342:108240. https://doi.org/10.1016/j.agee.2022.108240
[83]
Treseder KK, Mack MC, Cross A (2004) Relationships among fires, fungi, and soil dynamics in Alaskan boreal forests. Ecol Appl 14:1826–1838. https://doi.org/10.1890/03-5133
[84]
Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Bioch 19(6):703–707. https://doi.org/10.1016/0038-0717(87)90052-6
[85]
Varma A (2008) Mycorrhiza. India Amity University, Uttar Pradesh, pp 29–57
[86]
Verbruggen E, van der Heijden MGA, Weedon JT, Kowalchuck GA, Roling WFM (2012) Community assembly, species richness and nestedness of arbuscular mycorrhizal fungi in agricultural soils. Ecology 12:2341–2353. https://doi.org/10.1111/j.1365-294X.2012.05534.x
[87]
Wahab A, Muhammad M, Munir A, Abdi G, Zaman W, Ayaz A, Reddy SPP (2023) Role of arbuscular mycorrhizal fungi in regulating growth, enhancing productivity, and potentially influencing ecosystems under abiotic and biotic stresses. Plants 12(17):3102. https://doi.org/10.3390/plants12173102
[88]
Walkley A, Black IA (1934) an examination of the Degetiareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci 37:29–38. https://doi.org/10.1097/00010694-193401000-00003
[89]
Wang F (2017) Occurrence of arbuscular mycorrhizal fungi in mining-impacted sites and their contribution to ecological restoration: mechanisms and applications. Crit Rev Environ Sci Technol 47(20):1901–1957. https://doi.org/10.1080/10643389.2017.1400853
[90]
Wang YS, Liu RJ (2017) A checklist of arbuscular mycorrhizal fungi in the recent taxonomic system of Glomeromycota. Mycosystema 36(7):820–850. https://doi.org/10.13346/j.mycosystema.170078
[91]
Wang JC, Wang J, He JZ, Zhu YG, Qiao NH, Ge Y (2021a) Arbuscular mycorrhizal fungi and plant diversity drive restoration of nitrogen-cycling microbial communities. Mol Ecol 30(16):4133–4146. https://doi.org/10.1111/mec.16030
[92]
Wang JL, Zhang JW, Wang CJ, Ren GL, Yang YR, Wang DL (2021b) Precipitation exerts a strong influence on arbuscular mycorrhizal fungi community and network complexity in a semiarid steppe ecosystem. Eur J Soil Biol 102:103268. https://doi.org/10.1016/j.ejsobi.2020.103268
[93]
Weijtmans K, Davis M, Clinton P, Kuyper TW, Greenfield L (2007) Occurrence of arbuscular mycorrhiza and ectomycorrhizas on Leptospermum the Rakia catchment. Canterbury N Z J Ecol 31(2):255–260
[94]
Xiang D, Verbruggen E, Hu YJ, Veresoglou SD, Rillig MC, Zhou WP, Xu TL, Li H, Hao ZP, Chen YL, Chen BD (2014) Land use influences arbuscular mycorrhizal fungal communities in the farming–pastoral ecotone of northern China. New Phytol 204:968–978. https://doi.org/10.1111/nph.12961
[95]
Xu XL, Wang XJ, Cleary M, Wang P, Lu NN, Sun YJ, R?nnberg J (2020) Slope position rather than thinning intensity affects arbuscular mycorrhizal fungi (AMF) community in Chinese fir plantations. Forests 11:273. https://doi.org/10.3390/f11030273
[96]
Xue R, Yang Q, Miao FH, Wang XZ, Shen YY (2018) Slope aspect influences plant biomass, soil properties and microbial composition in alpine meadow on the Qinghai-Tibetan plateau. J Soil Sci Plant Nutr 18(1):1–12. https://doi.org/10.4067/S0718-95162018005000101
[97]
Yan PX, Hou H, Lv YZ, Zhang HY, Li J, Shao LL, Xie QM, Liang YL, Li JY, Ni XL (2023) Diversity characteristics of arbuscular mycorrhizal fungi communities in the soil along successional altitudes of Helan Mountain, arid, and semi-arid regions of China. Front Microbiol 14:1099131. https://doi.org/10.3389/fmicb.2023.1099131
[98]
Zhang MG, Yang M, Shi ZY, Gao JK, Wang XG (2022) Biodiversity and variations of arbuscular mycorrhizal fungi associated with roots along elevations in Mt. Taibai of China. Diversity 14(8):626. https://doi.org/10.3390/d14080626
PDF

Accesses

Citations

Detail

Sections
Recommended

/