Pitfalls in forest carbon sink projection

Yanli Dong1,2,3, Zhen Yu1,2,3()(), Evgenios Agathokleous1,2,3(), Guoyi Zhou1,2,3, Shirong Liu4

PDF
Journal of Forestry Research ›› 2024, Vol. 35 ›› Issue (1) : 87. DOI: 10.1007/s11676-024-01738-2
Perspective

Pitfalls in forest carbon sink projection

  • Yanli Dong1,2,3, Zhen Yu1,2,3()(), Evgenios Agathokleous1,2,3(), Guoyi Zhou1,2,3, Shirong Liu4
Author information +
History +

Abstract

Global forests are increasingly crucial for achieving net-zero carbon emissions, with a quarter of the mitigation efforts under the Paris Climate Agreement directed towards forests. In China, forests currently contribute to 13% of the global land's carbon sink, but their stability and persistence remain uncertain. We examined and identified that published studies suffered from oversimplifications of ecosystem succession and tree demographic dynamics, as well as poor constraints on land quality. Consequently, substantial estimations might have been suffered from underrepresented or ignored crucial factors, including tree demographic dynamics, and disturbances and habitat shifts caused by global climate change. We argue that these essential factors should be considered to enhance the reliability and accuracy of assessments of the potential for forest carbon sinks.

Keywords

Forest carbon / Carbon sink / Forest age / Land suitability / Forest demographic

Cite this article

Download citation ▾
Yanli Dong, Zhen Yu, Evgenios Agathokleous, Guoyi Zhou, Shirong Liu. Pitfalls in forest carbon sink projection. Journal of Forestry Research, 2024, 35(1): 87 https://doi.org/10.1007/s11676-024-01738-2

References

[1]
Anderegg WR, Schwalm C, Biondi F, Camarero JJ, Koch G, Litvak M, Ogle K, Shaw JD, Shevliakova E, Williams AP, Wolf A, Ziaco E, Pacala S (2015) Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science 349(6247):528–532. https://doi.org/10.1126/science.aab18
[2]
Anderegg William RL, Trugman Anna T, Badgley G, Anderson GB, Bartuska A, Ciais P, Cullenward D, Field CB (2020) Climate-driven risks to the climate mitigation potential of forests. Science 368(6497):eaaz7005. https://doi.org/10.1126/science.aaz7005
[3]
Bastin JF, Finegold Y, Garcia C, Mollicone D, Rezende M, Routh D, Zohner CM, Crowther TW (2019) The global tree restoration potential. Science 365(6448):75–77. https://doi.org/10.1126/science.aax0848
[4]
Brown A (2014) Water costs of afforestation. Nat Clim Chang 4(7):533–533. https://doi.org/10.1038/nclimate2295
[5]
Cai W, He N, Li M, Xu L, Wang L, Zhu J, Zeng N, Yan P, Si G, Zhang X, Cen X, Yu G, Sun OJ (2022) Carbon sequestration of Chinese forests from 2010 to 2060 spatiotemporal dynamics and its regulatory strategies. Sci Bull 67(8):836–843. https://doi.org/10.1016/j.scib.2021.12.012
[6]
Chen J, John R, Sun G, Fan P, Henebry GM, Fernández-Giménez ME, Zhang Y, Park H, Tian L, Groisman P (2018) Prospects for the sustainability of social-ecological systems (SES) on the Mongolian plateau: five critical issues. Environ Res Lett 13(12):123. https://doi.org/10.1088/1748-9326/aaf27b
[7]
Deng M, Hu S, Guo L, Jiang L, Huang YY, Schmid B, Liu C, Chang PF, Li S, Liu XJ, Ma K, Liu LL (2023) Tree mycorrhizal association types control biodiversity-productivity relationship in a subtropical forest. Sci Adv 9(3):eadd4468. https://doi.org/10.1126/sciadv.add4468
[8]
Doelman JC, Stehfest E, van Vuuren DP, Tabeau A, Hof AF, Braakhekke MC, Gernaat DEHJ, van den Berg M, van Zeist WJ, Daioglou V, van Meijl H, Lucas PL (2020) Afforestation for climate change mitigation: potentials, risks and trade-offs. Glob Chang Biol 26(3):1576–1591. https://doi.org/10.1111/gcb.14887
[9]
Dong Y, Agathokleous E, Liu S, Yu Z (2023) Demographic changes in China's forests from 1998 to 2018. For Ecosyst 10:100094.
[10]
Feng Y, Schmid B, Loreau M, Forrester DI, Fei SL, Zhu JX, Tang ZY, Zhu JL, Hong P, Ji CJ, Yue S, Su HJ, Xiong XY, Xiao J, Wang SP, Wang SP, Fang JY (2022) Multispecies forest plantations outyield monocultures across a broad range of conditions. Science 376(6595):864–866. https://doi.org/10.1126/science.abm6363
[11]
He N, Wen D, Zhu J, Tang X, Xu L, Zhang L, Hu H, Huang M, Yu G (2017) Vegetation carbon sequestration in Chinese forests from 2010 to 2050. Glob Chang Biol 23(4):1575–1584. https://doi.org/10.1111/gcb.13479
[12]
Hicke JA, Allen CD, Desai AR, Dietze MC, Hall RJ, Hogg EH, Kashian DM, Moore D, Raffa KF, Sturrock RN, Vogelmann J (2012) Effects of biotic disturbances on forest carbon cycling in the United States and Canada. Glob Chang Biol 18(1):7–34. https://doi.org/10.1111/j.1365-2486.2011.02543.x
[13]
Huang L, Liu J, Shao Q, Xu X (2012) Carbon sequestration by forestation across China: past, present, and future. Renew Sust Ener Rev 16(2):1291–1299. https://doi.org/10.1016/j.rser.2011.10.004
[14]
Huang Y, Sun W, Qin Z, Zhang W, Yu Y, Li T, Zhang Q, Wang G, Yu L, Wang Y, Ding F, Zhang P (2022a) The role of China’s terrestrial carbon sequestration 2010–2060 in offsetting energy-related CO2 emissions. Natl Sci Rev 9(8):nwac057. https://doi.org/10.1093/nsr/nwac057
[15]
Huang C, Feng J, Tang F, He HS, Liang Y, Wu MM, Xu W, Liu B, Shi FX, Chen FS (2022b) Predicting the responses of boreal forests to climate-fire-vegetation interactions in Northeast China. Environ Model Softw 153:105410. https://doi.org/10.1016/j.envsoft.2022.105410
[16]
Ju W, Chen J, Harvey D, Wang S (2007) Future carbon balance of China’s forests under climate change and increasing CO2. J Environ Manage 85(3):538–562. https://doi.org/10.1016/j.jenvman.2006.04.028
[17]
Li H (2021) Research advance of forest carbon sink assessment methods and carbon sequestration potential estimation under carbon neutral vision. Geol Surver China 8(4):79–86. https://doi.org/10.19388/j.zgdzdc.2021.04.08. (in Chinese)
[18]
Li Q, Zhu J, Feng Y, Xiao W (2018) Carbon storage and carbon sequestration potential of the forest in China. Clim Chang Res 14(3):287–294 (in Chinese)
[19]
Liu Y, Gao X, Fu C, Liu Z (2019) Estimation of carbon sequestration potential of forest biomass in China based on National Forest Resources Inventory. Acta Ecol Sin 39(11):4002–4010. https://doi.org/10.5846/stxb201805071016. (in Chinese)
[20]
Luo S, Phillips RP, Jo I, Fei SL, Liang JJ, Schmid B, Eisenhauer N (2023) Higher productivity in forests with mixed mycorrhizal strategies. Nat Commun 14(1):1377. https://doi.org/10.1038/s41467-023-36888-0
[21]
Marcos FM, Josep P, Frederic C, Philippe C, Michael O, Christian R, Jordi S, Sara V, Yang H, Stephen S, Friedlingstein P, Vivek KA, Daniel G, Atul KJ, Danica LL, Patrick CM, Janssens IA (2023) Diagnosing destabilization rick in global land carbon sinks. Nature 615:848–853. https://doi.org/10.1038/s41586-023-05725-1
[22]
Peng CH, Ma ZH, Lei XD, Zhu Q, Chen H, Wang WF, Liu SR, Li WZ, Fang XQ, Zhou XL (2011) A drought-induced pervasive increase in tree mortality across Canada’s boreal forests. Nat Clim Chang 1(9):467–471. https://doi.org/10.1038/nclimate1293
[23]
Rüger N, Condit R, Dent DH, DeWalt SJ, Hubbell SP, Lichstein JW, Lopez OR, Wirth C, Farrior CE (2020) Demographic trade-offs predict tropical forest dynamics. Science 368(6487):165–168. https://doi.org/10.1126/science.aaz4797
[24]
Shang R, Chen JM, Xu M, Lin X, Li P, Yu G, He N, Xu L, Gong P, Liu L, Liu H, Jiao W (2023) China’s current forest age structure will lead to weakened carbon sinks in the near future. The Innov 4(6):100515. https://doi.org/10.1016/j.xinn.2023.100515
[25]
State Forestry Administration of the People’s Republic of China (2014) National Technical Guidelines for Continuous Forest Resource Inventory, Beijing, China.
[26]
State Forestry Administration of the People’s Republic of China (2016) National forest management plan (2016?2050), Beijing, China.
[27]
Strassburg BBN, Iribarrem A, Beyer HL, Cordeiro CL, Crouzeilles R, Jakovac CC, Braga Junqueira A, Lacerda E, Latawiec AE, Balmford A, Brooks TM (2020) Global priority areas for ecosystem restoration. Nature 586(7831):723–725. https://doi.org/10.1038/s41586-020-2784-9
[28]
Vicente-Serrano SM, Gouveia C, Camarero JJ, Beguería S, Trigo R, López-Moreno JI, Azorín-Molina C, Pasho E, Lorenzo-Lacruz J, Revuelto J, Morán-Tejeda E, Sanchez-Lorenzo A (2013) Response of vegetation to drought time-scales across global land biomes. PNAS 110(1):52–57. https://doi.org/10.1073/pnas.1207068110
[29]
Wang H, Harrison SP, Li M, Colin Prentice I, Qiao SC, Wang RX, Xu HY, Mengoli G, Peng YK, Yang YZ (2022) The China plant trait database version 2. Sci Data 9(1):769. https://doi.org/10.1038/s41597-022-01884-4
[30]
Wang K, Wang Y, Wen H, Zhang XT, Yu JH, Wang QG, Han SJ, Wang WJ (2023) Biomass carbon sink stability of conifer and broadleaf boreal forests: differently associated with plant diversity and mycorrhizal symbionts? Environ Sci Pollut R 30(54):115337–115359. https://doi.org/10.1007/s11356-023-30445-4
[31]
Xin J, Alan DZ, Liang S, Wang D, Zeng Z (2022) Forest restoration potential in China: implications for carbon capture. J Remote Sens 2022:0006. https://doi.org/10.34133/remotesensing.0006
[32]
Xu H, Yue C, Zhang Y, Liu D, Piao S (2023) Forestation at the right time with the right species can generate persistent carbon benefits in China. PNAS 120(41):e2304988120. https://doi.org/10.1073/pnas.2304988120
[33]
Yao Y, Piao S, Wang T (2018) Future biomass carbon sequestration capacity of Chinese forests. Sci Bull 63(17):1108–1117. https://doi.org/10.1016/j.scib.2018.07.015
[34]
Yu Z, Liu S, Wang J, Wei X, Schuler J, Sun P, Harper R, Zegre N (2019) Natural forests exhibit higher carbon sequestration and lower water consumption than planted forests in China. Glob Chang Biol 25(1):68–77. https://doi.org/10.1111/gcb.14484
[35]
Yu Z, You W, Agathokleous E, Zhou G, Liu S (2021) Forest management required for consistent carbon sink in China’s forest plantations. For Ecosyst 8(1):54. https://doi.org/10.1186/s40663-021-00335-7
[36]
Yu Z, Ciais P, Piao S, Houghton RA, Lu C, Tian H, Agathokleous E, Kattel GR, Sitch S, Goll D, Yue X, Walker A, Friedlingstein P, Jain AK, Liu S, Zhou G (2022a) Forest expansion dominates China’s land carbon sink since 1980. Nat Commun 13(1):5374. https://doi.org/10.1038/s41467-022-32961-2
[37]
Yu Z, Zhou G, Liu L, Manzoni S, Ciais P, Goll D, Penuelas J, Sardans J, Wang W, Zhu J, Li L, Yan J, Liu J, Tang X (2022b) Natural forests promote phosphorus retention in soil. Glob Chang Biol 28(4):1678–1689. https://doi.org/10.1111/gcb.15996
[38]
Yu Z, Dong Y, Lu C, Evgenios A, Zhang L, Liu S, Zhou G (2023) China’s forestation on marginal lands was less efficient in carbon sequestration compared to non-marginal lands. One Earth 6(12):1692–1702. https://doi.org/10.1016/j.oneear.2023.11.006
[39]
Yu Z, Liu SR, Li HK, Liang JJ, Liu GW, Piao SL, Tian HQ, Zhou GY, Lu CQ, You WB, Sun PS, Dong YL, Sitch S, Agathokleous E (2024) Maximizing carbon sequestration potential in Chinese forests through optimal management. Nat Commun 15:3154. https://doi.org/10.1038/s41467-024-47143-5
[40]
Zhang C, Ju W, Chen J, Fang M, Wu M, Chang X, Wang T, Wang X (2018) Sustained Biomass Carbon Sequestration by China’s Forests from 2010 to 2050. Forests 9(11):689. https://doi.org/10.3390/f9110689
[41]
Zhang L, Sun P, Huettmann F, Liu S (2022) Where should China practice forestry in a warming world? Glob Chang Biol 28(7):2461–2475. https://doi.org/10.1111/gcb.16065
[42]
Zhou L, Wang S, Kindermann G, Yu G, Huang M, Mickler R, Kraxner F, Shi H, Gong Y (2013) Carbon dynamics in woody biomass of forest ecosystem in China with forest management practices under future climate change and rising CO2 concentration. Chin Geogr Sci 23(5):519–536. https://doi.org/10.1007/s11769-013-0622-9
PDF

Accesses

Citations

Detail

Sections
Recommended

/