Pinus sylvestris and Picea abies canopy effects on deposition of air pollutants

Valentinas Černiauskas, Iveta Varnagirytė-Kabašinskienė, Valda Araminienė, Vidas Stakėnas

Journal of Forestry Research ›› 2024, Vol. 35 ›› Issue (1) : 75.

Journal of Forestry Research All Journals
PDF
Journal of Forestry Research ›› 2024, Vol. 35 ›› Issue (1) : 75. DOI: 10.1007/s11676-024-01728-4
Original Paper

Pinus sylvestris and Picea abies canopy effects on deposition of air pollutants

Author information +
History +

Abstract

Tree canopies influence atmospheric pollutant depositions depending on type, ecosystem characteristics, and local climatic conditions. This study investigated the impact of Pinus sylvestris L. and Picea abies (L.) H. Karst., and a mixture of both, on the chemical composition of precipitation. Three permanent plots within the ICP forest level II monitoring network in Lithuania were selected to illustrate typical hemiboreal coniferous forests. The study analysed (1) the concentrations of NO2, NH3 and SO2 in the ambient air; (2) the concentrations of SO4 2−, NO3 , NH4 +, Na+, K+, Ca2+ and Cl in throughfall beneath canopies and in precipitation collected in an adjacent field, and (3) S and total N, Na+, K+, Ca2+ and Cl depositions in throughfall and precipitation over 2006–2022. Results show a significant decrease in SO2 emissions in the ambient air; NO2 and NH3 emissions also decreased. The canopies reduced the acidity of throughfall, although they led to notably higher concentrations of SO4 2−, NO3 , Na+, and particularly K+. During the study, low variability in NO3 deposition and a decrease in NH4 + deposition occurred. Deposition loads increased by 20–30% when precipitation passed through the canopy. The cumulative deposition of S, Cl, Na, K, Ca, and N was greater under P. abies than under P. sylvestris. However, K deposition in throughfall was considerably lower under P. sylvestris compared to the P. abies or mixed stand. Throughfall S depositions declined across all three coniferous plots. Overall, there was no specific effect of tree species on throughfall chemistry.

Cite this article

Download citation ▾
Valentinas Černiauskas, Iveta Varnagirytė-Kabašinskienė, Valda Araminienė, Vidas Stakėnas. Pinus sylvestris and Picea abies canopy effects on deposition of air pollutants. Journal of Forestry Research, 2024, 35(1): 75 https://doi.org/10.1007/s11676-024-01728-4
This is a preview of subscription content, contact us for subscripton.

References

AherneJ, PoschM. Impacts of nitrogen and sulphur deposition on forest ecosystem services in Canada. Curr Opin Env Sust, 2013, 5(1): 108-115
CrossRef Google scholar
ArmolaitisK, Varnagirytė-KabašinskienėI, ŽemaitisP, StakėnasV, BeniušisR, KulbokasG, UrbaitisG. Evaluation of organic carbon stocks in mineral and organic soils in Lithuania. Soil Use Manage, 2022, 38(1): 355-368
CrossRef Google scholar
Bobbink R, Braun S, Nordin A, Power S, Schütz K, Strengbom J, Weijters M, Tomassen H (2011) Review and revision of empirical critical loads and dose-response relationships. In: Proceedings of an expert workshop, Noordwijkerhout, 2325 National Institute for Public Health and the Environment. Bilthoven Netherlands. https://rivm.openrepository.com/bitstream/handle/10029/260510/680359002.pdf?sequence=3&isAllowed=y [assessed on 27.01.2024]
BoxmanAW, PetersRC, RoelofsJG. Long term changes in atmospheric N and S throughfall deposition and effects on soil solution chemistry in a Scots pine forest in the Netherlands. Environ Pollut, 2008, 156(3): 1252-1259
CrossRef Google scholar
BredemeierM. Forest canopy transformation of atmospheric deposition. Water Air Soil Pollut, 1988, 40: 121-138
CrossRef Google scholar
ChangCT, YangCJ, HuangKH, HuangJC, LinTC. Changes of precipitation acidity related to sulfur and nitrogen deposition in forests across three continents in north hemisphere over last two decades. Sci Total Environ, 2022, 806(1): 150552
CrossRef Google scholar
ChiwaM, CrossleyA, SheppardLJ, SakugawaH, CapeJN. Throughfall chemistry and canopy interactions in a Sitka spruce plantation sprayed with six different simulated polluted mist treatments. Environ Pollut, 2004, 127: 57-64
CrossRef Google scholar
Clarke N, Žlindra D, Ulrich E, Mosello R, Derome J, Derome K, König N, Lövblad G, Draaijers GPJ, Hansen K, Thimonier A, Waldner P (2016) Part XIV: Sampling and analysis of deposition. In: UNECE ICP Forests Programme Co-ordinating Centre (ed.): Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests. Thünen Institute of Forest Ecosystems Eberswalde Germany 32 p. http://www.icpforests.org/Manual.htm [assessed on 24.11.2023]
CortiG, AgnelliA, CoccoS, CardelliV, MasseJ, CourchesneF. Soil affects throughfall and stemflow under Turkey oak (Quercus cerris L.). Geoderma, 2019, 333: 43-56
CrossRef Google scholar
CostaDS, OttoJ, ChmaraI, Bernhardt-RomermannM. Estimating historic N- and S-deposition with publicly available data—an example from central Germany. Environ Pollut, 2022, 292: 118378
CrossRef Google scholar
Da RosL, RodeghieroM, GoodaleCL, TrafoierG, PanzacchiP, GiammarchiF, TononG, VenturaM. Canopy 15N fertilization increases short-term plant N retention compared to ground fertilization in an oak forest. For Ecol Manag, 2023, 539: 1-10
CrossRef Google scholar
De VriesW, DuEZ, Butterbach-BahlK. Short and long-term impacts of nitrogen deposition on carbon sequestration by forest ecosystems. Curr Opin Env Sust, 2014, 9–10: 90-104
CrossRef Google scholar
De VriesW, HettelinghJP, PoschM. de VriesW, HettelinghJP, PoschM. The history and current state of critical loads and dynamic modelling assessments. Critical loads and dynamic risk assessments Environ Pollut 25 , 2015 Dordrecht Springer
CrossRef Google scholar
DelariaER, CohenRC. Measurements of atmosphere-biosphere exchange of oxidized nitrogen and implications for the chemistry of atmospheric NOx. Acc Chem Res, 2023, 56(13): 1720-1730
CrossRef Google scholar
DraaijersGPJ, ErismanJW. A canopy budget model to assess atmospheric deposition from throughfall measurements. Water, Air Soil Pollut, 1995, 85: 2253-2258
CrossRef Google scholar
DuEZ. Rise and fall of nitrogen deposition in the United States. Proc Natl Acad Sci, 2016, 113(26): E3594-E3595
CrossRef Google scholar
DuEZ, de VriesW. Nitrogen-induced new net primary production and carbon sequestration in global forests. Environ Pollut, 2018, 242: 1476-1487
CrossRef Google scholar
EisalouHK, ŞengönülK, GökbulakF, SerengilY, UygurB. Effects of forest canopy cover and floor on chemical quality of water in broad leaved and coniferous forests of Istanbul, Turkey. For Ecol Manag, 2013, 289: 371-377
CrossRef Google scholar
ErismanJW, GrennfeltP, SuttonM. The European perspective on nitrogen emission and deposition. Environ Int, 2003, 29(2–3): 311-325
CrossRef Google scholar
EtzoldS, FerrettiM, ReindsGJ, SolbergS, GesslerA, WaldnerP, SchaubM, SimpsonD, BenhamS, HansenK, IngerslevM, JonardM, KarlssonPE, LindroosA-J, MarchettoA, ManningerM, MeesenburgH, MeriläP, NöjdP, RautioP, SandersTGM, SeidlingW, SkudnikM, ThimonierA, VerstraetenA, VesterdalL, VejpustkovaM, de VriesW. Nitrogen deposition is the most important environmental driver of growth of pure, even-aged and managed European forests. For Ecol Manag, 2020, 458: 117762
CrossRef Google scholar
FerrarettoD, NairR, ShahNW, ReayD, MencucciniM, SpencerM, HealKV. Forest canopy nitrogen uptake can supply entire foliar demand. Funct Ecol, 2022, 36(4): 933-949
CrossRef Google scholar
GallowayJN, TownsendAR, ErismanJW, BekundaM, CaiZ, FreneyJR, MartinelliLA, SeitzingerSP, SuttonMA. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science, 2008, 320: 889-892
CrossRef Google scholar
Galvonaitė A, Valiukas D, Kilpys J, Kitrienė Z, Misiūnienė M (2013) Lietuvos klimato atlasas [Lithuanian climate atlas]. Lietuvos hidrometeorologijos tarnyba prie Aplinkos ministerijos [Lithuanian Hydrometeorological Service under the Ministry of Environment]: Vilnius, Lietuva. (In Lithuanian)
GavrilovMB, TosicI, MarkovicSB, UnkasevicM, PetrovicP. Analysis of annual and seasonal temperature trends using the Mann-Kendall test in Vojvodina. Serbia Időjárás, 2016, 120(2): 183-198
GermerS, NeillC, KruscheAV, NetoSCG, ElsenbeerH. Seasonal and within-event dynamics of rainfall and throughfall chemistry in an open tropical rainforest in Rondonia Brazil. Biogeochemistry, 2007, 86: 155
CrossRef Google scholar
GrennfeltP, EnglerydA, ForsiusM, HovØ, RodheH, CowlingE. Acid rain and air pollution: 50 years of progress in environmental science and policy. Ambio, 2020, 49(4): 849-864
CrossRef Google scholar
HamdanK, SchmidtM. The influence of bigleaf maple on chemical properties of throughfall, stemflow, and forest floor in coniferous forest in the Pacific Northwest. Can J for Res, 2012, 42(5): 868-878
CrossRef Google scholar
IUSS Working Group WRB (2015) World Reference Base for Soil Resources 2014 update 2015 International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No 106 FAO Rome
KopáčekJ, HejzlarJ, KrámP, OulehleF, PoschM. Effect of industrial dust on precipitation chemistry in the Czech Republic (Central Europe) from 1850 to 2013. Water Res, 2016, 103: 30-37
CrossRef Google scholar
KozłowskiR, KruszykR, MałekS. The effect of environmental conditions on pollution deposition and canopy leaching in two pine stands (West Pomerania and Świętokrzyskie Mountains, Poland). Forests, 2020, 11: 535
CrossRef Google scholar
KurzycaI, FrankowskiM. Recent changes in the oxidized to reduced nitrogen ratio in atmospheric precipitation. Atmos Environ, 2017, 167: 642-655
CrossRef Google scholar
LiuXJ, ZhangY, HanWX, TangAH, ShenJL, CuiZL, VitousekP, ErismanJW, GouldingK, ChristieP, FangmeierA, ZhangFS. Enhanced nitrogen deposition over China. Nature, 2013, 494(7438): 459-462
CrossRef Google scholar
Michel AK, Kirchner T, Prescher AK, Schwärzel K (2022) Forest Condition in Europe: The 2022 Assessment. ICP Forests Technical Report under the UNECE Convention on Long-range Transboundary Air Pollution (Air Convention). Eberswalde: Thünen Institute https://doi.org/10.3220/ICPTR1656330928000 [assessed on 24.11.2023]
NordénU. Acid deposition and throughfall fluxes of elements as related to tree species in deciduous forests of South Sweden. Water Air Soil Pollut, 1991, 60: 209-230
CrossRef Google scholar
Pohlert T (2023) Non-parametric trend tests and change-point detection. https://cran.r-project.org/web/packages/trend/vignettes/trend.pdf [assessed on 24.11.2023]
Ponette-GonzálezAG, WeathersKC, CurranLM. Water inputs across a tropical montane landscape in Veracruz, Mexico: synergistic effects of land cover, rain and fog seasonality, and interannual precipitation variability. Glob Chang Biol, 2010, 16(3): 946-963
CrossRef Google scholar
PoschM, AherneJ, MoldanF, EvansCD, ForsiusM, LarssenT, HelliwellR, CosbyBJ. Dynamic modeling and target loads of sulfur and nitrogen for surface waters in Finland, Norway, Sweden, and the United Kingdom. Environ Sci Technol, 2019, 53(9): 5062-5070
CrossRef Google scholar
RenZR, ZhangYQ, ZhangYH. Nitrogen deposition magnifies the positive response of plant community production to precipitation: ammonium to nitrate ratio matters. Environ Pollut, 2021, 276: 116659
CrossRef Google scholar
Schaub M, Calatayud V, Ferretti M, Brunialti G, Lövblad G, Krause G, Sanz MJ (2016) Part XV: Monitoring of air quality. In: UNECE ICP Forests Programme Co-ordinating Centre (ed.): Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests. Thünen Institute of Forest Ecosystems Eberswalde Germany 11 p
SchmitzA, SandersTGM, BolteA, BussottiF, DirnböckT, JohnsonJ, PeñuelasJ, PollastriniM, PrescherAK, SardansJ, VerstraetenA, de VriesW. Responses of forest ecosystems in Europe to decreasing nitrogen deposition. Environ Pollut, 2019, 244: 980-994
CrossRef Google scholar
SchwartzJS, VeenemanA, KulpMA, RenfroJR. Throughfall deposition chemistry in the great smoky mountains national park: landscape and seasonal effects. Water Air Soil Pollut, 2022, 233: 107
CrossRef Google scholar
ShengHC, GuoN, JuCY, CaiTJ. Variation of nutrient fluxes by rainfall redistribution processes in the forest canopy of an urban larch plantation in northeast China. J Forestry Res, 2022, 33: 1259-1269
CrossRef Google scholar
Slootweg J, Posch M, Hettelingh JP (2016) Modelling and mapping the impacts of atmospheric deposition of nitrogen and sulphur: CCE Status Report 2015 [The Coordination Centre for Effects, CCE: www.wge-cce.org]. National Institute for Public Health and the Environment. The Netherlands, 186 p. https://www.umweltbundesamt.de/sites/default/files/medien/4038/dokumente/2_cce_sr2015.pdf [assessed 27.01.2024]
State Forest Service (2022) Lithuanian forestry statistics 2021 https://amvmt.lrv.lt/uploads/amvmt/documents/files/Statistika/MiskuStatistika/2021/01%20Misku%20ukio%20statistika%202021_m.pdf [assessed on 24.11.2023]
SuL, ZhaoCM, XuWT, XieZQ. Hydrochemical fluxes in bulk precipitation, throughfall, and stemflow in a mixed evergreen and deciduous broadleaved forest. Forests, 2019, 10: 507
CrossRef Google scholar
TanSY, ZhaoHR, YangWQ, TanB, NiXY, YueK, ZhangY, WuFZ. The effect of canopy exchange on input of base cations in a subalpine spruce plantation during the growth season. Sci Rep, 2018, 8(1): 9373
CrossRef Google scholar
Vaičys M, Karazija S, Kuliešis A, Rutkauskas A (2006) Miškų augavietės. Miško augaviečių ̨tipai. [Forest sites]. Lututė, Kaunas. (In Lithuanian)
VuorenmaaJ, AugustaitisA, BeudertB, BochenekW, ClarkeN, de WitHA, DirnböckT, FreyJ, HakolaH, KleemolaS, KoblerJ, KrámP, LindroosAJ, LundinL, LöfgrenS, MarchettoA, PeckaT, Schulte-BispingH, SkotakK, SrybnyA, SzpikowskiJ, UkonmaanahoL, VáňaM, ÅkerblomS, ForsiusM. Long-term changes (1990–2015) in the atmospheric deposition and runoff water chemistry of sulphate, inorganic nitrogen and acidity for forested catchments in Europe in relation to changes in emissions and hydrometeorological conditions. Sci Total Environ, 2018, 625: 1129-1145
CrossRef Google scholar
WhelanMJ, AndersonJM. Modelling spatial patterns of throughfall and interception loss in a Norway spruce (Picea abies) plantation at the plot scale. J Hydrol, 1996, 186(1–4): 335-354
CrossRef Google scholar
ŽaltauskaitėJ, JuknysR. Throughfall chemistry and canopy interactions in urban and suburban coniferous stands. EREM, 2009, 4(50): 6-12
ZhangSL, LiangCP. Effect of a native forest canopy on rainfall chemistry in China’s Qinling Mountains. Environ Earth Sci, 2012, 67: 1503-1513
CrossRef Google scholar
ZhaoHR, YangWQ, WuFZ, TanB. Mixed forest plantations can efficiently filter rainfall deposits of sulfur and chlorine in Western China. Sci Rep, 2017, 7: 41680
CrossRef Google scholar
PDF

75

Accesses

0

Citations

1

Altmetric

Detail

Sections
Recommended

/