Pinus sylvestris and Picea abies canopy effects on deposition of air pollutants

Valentinas Černiauskas1, Iveta Varnagirytė-Kabašinskienė1(), Valda Araminienė1, Vidas Stakėnas1

PDF
Journal of Forestry Research ›› 2024, Vol. 35 ›› Issue (1) : 75. DOI: 10.1007/s11676-024-01728-4

Pinus sylvestris and Picea abies canopy effects on deposition of air pollutants

  • Valentinas Černiauskas1, Iveta Varnagirytė-Kabašinskienė1(), Valda Araminienė1, Vidas Stakėnas1
Author information +
History +

Abstract

Tree canopies influence atmospheric pollutant depositions depending on type, ecosystem characteristics, and local climatic conditions. This study investigated the impact of Pinus sylvestris L. and Picea abies (L.) H. Karst., and a mixture of both, on the chemical composition of precipitation. Three permanent plots within the ICP forest level II monitoring network in Lithuania were selected to illustrate typical hemiboreal coniferous forests. The study analysed (1) the concentrations of NO2, NH3 and SO2 in the ambient air; (2) the concentrations of SO42−, NO3, NH4+, Na+, K+, Ca2+ and Cl in throughfall beneath canopies and in precipitation collected in an adjacent field, and (3) S and total N, Na+, K+, Ca2+ and Cl depositions in throughfall and precipitation over 2006–2022. Results show a significant decrease in SO2 emissions in the ambient air; NO2 and NH3 emissions also decreased. The canopies reduced the acidity of throughfall, although they led to notably higher concentrations of SO42−, NO3, Na+, and particularly K+. During the study, low variability in NO3 deposition and a decrease in NH4+ deposition occurred. Deposition loads increased by 20–30% when precipitation passed through the canopy. The cumulative deposition of S, Cl, Na, K, Ca, and N was greater under P. abies than under P. sylvestris. However, K deposition in throughfall was considerably lower under P. sylvestris compared to the P. abies or mixed stand. Throughfall S depositions declined across all three coniferous plots. Overall, there was no specific effect of tree species on throughfall chemistry.

Keywords

Precipitation / Throughfall / Deposition of chemicals / Pollution / Lithuania

Cite this article

Download citation ▾
Valentinas Černiauskas, Iveta Varnagirytė-Kabašinskienė, Valda Araminienė, Vidas Stakėnas. Pinus sylvestris and Picea abies canopy effects on deposition of air pollutants. Journal of Forestry Research, 2024, 35(1): 75 https://doi.org/10.1007/s11676-024-01728-4

References

[1]
Aherne J, Posch M (2013) Impacts of nitrogen and sulphur deposition on forest ecosystem services in Canada. Curr Opin Env Sust 5(1):108–115. https://doi.org/10.1016/j.cosust.2013.02.005
[2]
Armolaitis K, Varnagiryt?-Kaba?inskien? I, ?emaitis P, Stak?nas V, Beniu?is R, Kulbokas G, Urbaitis G (2022) Evaluation of organic carbon stocks in mineral and organic soils in Lithuania. Soil Use Manage 38(1):355–368. https://doi.org/10.1111/sum.12734
[3]
Bobbink R, Braun S, Nordin A, Power S, Schütz K, Strengbom J, Weijters M, Tomassen H (2011) Review and revision of empirical critical loads and dose-response relationships. In: Proceedings of an expert workshop, Noordwijkerhout, 2325 National Institute for Public Health and the Environment. Bilthoven Netherlands. https://rivm.openrepository.com/bitstream/handle/10029/260510/680359002.pdf?sequence=3&isAllowed=y [assessed on 27.01.2024]
[4]
Boxman AW, Peters RC, Roelofs JG (2008) Long term changes in atmospheric N and S throughfall deposition and effects on soil solution chemistry in a Scots pine forest in the Netherlands. Environ Pollut 156(3):1252–1259. https://doi.org/10.1016/j.envpol.2008.03.017
[5]
Bredemeier M (1988) Forest canopy transformation of atmospheric deposition. Water Air Soil Pollut 40:121–138. https://doi.org/10.1007/BF00279460
[6]
Chang CT, Yang CJ, Huang KH, Huang JC, Lin TC (2022) Changes of precipitation acidity related to sulfur and nitrogen deposition in forests across three continents in north hemisphere over last two decades. Sci Total Environ 806(1):150552. https://doi.org/10.1016/j.scitotenv.2021.150552
[7]
Chiwa M, Crossley A, Sheppard LJ, Sakugawa H, Cape JN (2004) Throughfall chemistry and canopy interactions in a Sitka spruce plantation sprayed with six different simulated polluted mist treatments. Environ Pollut 127:57–64. https://doi.org/10.1016/S0269-7491(03)00259-8
[8]
Clarke N, ?lindra D, Ulrich E, Mosello R, Derome J, Derome K, K?nig N, L?vblad G, Draaijers GPJ, Hansen K, Thimonier A, Waldner P (2016) Part XIV: Sampling and analysis of deposition. In: UNECE ICP Forests Programme Co-ordinating Centre (ed.): Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests. Thünen Institute of Forest Ecosystems Eberswalde Germany 32 p. http://www.icpforests.org/Manual.htm [assessed on 24.11.2023]
[9]
Corti G, Agnelli A, Cocco S, Cardelli V, Masse J, Courchesne F (2019) Soil affects throughfall and stemflow under Turkey oak (Quercus cerris L.). Geoderma 333:43–56. https://doi.org/10.1016/j.geoderma.2018.07.010
[10]
Costa DS, Otto J, Chmara I, Bernhardt-Romermann M (2022) Estimating historic N- and S-deposition with publicly available data—an example from central Germany. Environ Pollut 292:118378. https://doi.org/10.1016/j.envpol.2021.118378
[11]
Da Ros L, Rodeghiero M, Goodale CL, Trafoier G, Panzacchi P, Giammarchi F, Tonon G, Ventura M (2023) Canopy 15N fertilization increases short-term plant N retention compared to ground fertilization in an oak forest. For Ecol Manag 539:1–10. https://doi.org/10.1016/j.foreco.2023.121001
[12]
De Vries W, Du EZ, Butterbach-Bahl K (2014) Short and long-term impacts of nitrogen deposition on carbon sequestration by forest ecosystems. Curr Opin Env Sust 9–10:90–104. https://doi.org/10.1016/j.cosust.2014.09.001
[13]
De Vries W, Hettelingh JP, Posch M (2015) The history and current state of critical loads and dynamic modelling assessments. In: de Vries W, Hettelingh JP, Posch M (eds) Critical loads and dynamic risk assessments Environ Pollut 25. Springer, Dordrecht
[14]
Delaria ER, Cohen RC (2023) Measurements of atmosphere-biosphere exchange of oxidized nitrogen and implications for the chemistry of atmospheric NOx. Acc Chem Res 56(13):1720–1730. https://doi.org/10.1021/acs.accounts.3c00090
[15]
Draaijers GPJ, Erisman JW (1995) A canopy budget model to assess atmospheric deposition from throughfall measurements. Water, Air Soil Pollut 85:2253–2258. https://doi.org/10.1007/BF01186169
[16]
Du EZ (2016) Rise and fall of nitrogen deposition in the United States. Proc Natl Acad Sci 113(26):E3594–E3595. https://doi.org/10.1073/pnas.160754311
[17]
Du EZ, de Vries W (2018) Nitrogen-induced new net primary production and carbon sequestration in global forests. Environ Pollut 242:1476–1487. https://doi.org/10.1016/j.envpol.2018.08.041
[18]
Eisalou HK, ?eng?nül K, G?kbulak F, Serengil Y, Uygur B (2013) Effects of forest canopy cover and floor on chemical quality of water in broad leaved and coniferous forests of Istanbul, Turkey. For Ecol Manag 289:371–377. https://doi.org/10.1016/j.foreco.2012.10.031
[19]
Erisman JW, Grennfelt P, Sutton M (2003) The European perspective on nitrogen emission and deposition. Environ Int 29(2–3):311–325. https://doi.org/10.1016/S0160-4120(02)00162-9
[20]
Etzold S, Ferretti M, Reinds GJ, Solberg S, Gessler A, Waldner P, Schaub M, Simpson D, Benham S, Hansen K, Ingerslev M, Jonard M, Karlsson PE, Lindroos A-J, Marchetto A, Manninger M, Meesenburg H, Meril? P, N?jd P, Rautio P, Sanders TGM, Seidling W, Skudnik M, Thimonier A, Verstraeten A, Vesterdal L, Vejpustkova M, de Vries W (2020) Nitrogen deposition is the most important environmental driver of growth of pure, even-aged and managed European forests. For Ecol Manag 458:117762. https://doi.org/10.1016/j.foreco.2019.117762
[21]
Ferraretto D, Nair R, Shah NW, Reay D, Mencuccini M, Spencer M, Heal KV (2022) Forest canopy nitrogen uptake can supply entire foliar demand. Funct Ecol 36(4):933–949. https://doi.org/10.1111/1365-2435.14005
[22]
Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889–892. https://doi.org/10.1126/science.1136674
[23]
Galvonait? A, Valiukas D, Kilpys J, Kitrien? Z, Misiūnien? M (2013) Lietuvos klimato atlasas [Lithuanian climate atlas]. Lietuvos hidrometeorologijos tarnyba prie Aplinkos ministerijos [Lithuanian Hydrometeorological Service under the Ministry of Environment]: Vilnius, Lietuva. (In Lithuanian)
[24]
Gavrilov MB, Tosic I, Markovic SB, Unkasevic M, Petrovic P (2016) Analysis of annual and seasonal temperature trends using the Mann-Kendall test in Vojvodina. Serbia Id?járás 120(2):183–198
[25]
Germer S, Neill C, Krusche AV, Neto SCG, Elsenbeer H (2007) Seasonal and within-event dynamics of rainfall and throughfall chemistry in an open tropical rainforest in Rondonia Brazil. Biogeochemistry 86:155. https://doi.org/10.1007/s10533-007-9152-9
[26]
Grennfelt P, Engleryd A, Forsius M, Hov ?, Rodhe H, Cowling E (2020) Acid rain and air pollution: 50 years of progress in environmental science and policy. Ambio 49(4):849–864. https://doi.org/10.1007/s13280-019-01244-4
[27]
Hamdan K, Schmidt M (2012) The influence of bigleaf maple on chemical properties of throughfall, stemflow, and forest floor in coniferous forest in the Pacific Northwest. Can J for Res 42(5):868–878. https://doi.org/10.1139/x2012-042
[28]
IUSS Working Group WRB (2015) World Reference Base for Soil Resources 2014 update 2015 International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No 106 FAO Rome
[29]
Kopá?ek J, Hejzlar J, Krám P, Oulehle F, Posch M (2016) Effect of industrial dust on precipitation chemistry in the Czech Republic (Central Europe) from 1850 to 2013. Water Res 103:30–37. https://doi.org/10.1016/j.watres.2016.07.017
[30]
Koz?owski R, Kruszyk R, Ma?ek S (2020) The effect of environmental conditions on pollution deposition and canopy leaching in two pine stands (West Pomerania and ?wi?tokrzyskie Mountains, Poland). Forests 11:535. https://doi.org/10.3390/f11050535
[31]
Kurzyca I, Frankowski M (2017) Recent changes in the oxidized to reduced nitrogen ratio in atmospheric precipitation. Atmos Environ 167:642–655. https://doi.org/10.1016/j.atmosenv.2017.08.026
[32]
Liu XJ, Zhang Y, Han WX, Tang AH, Shen JL, Cui ZL, Vitousek P, Erisman JW, Goulding K, Christie P, Fangmeier A, Zhang FS (2013) Enhanced nitrogen deposition over China. Nature 494(7438):459–462. https://doi.org/10.1038/nature11917
[33]
Michel AK, Kirchner T, Prescher AK, Schw?rzel K (2022) Forest Condition in Europe: The 2022 Assessment. ICP Forests Technical Report under the UNECE Convention on Long-range Transboundary Air Pollution (Air Convention). Eberswalde: Thünen Institute https://doi.org/10.3220/ICPTR1656330928000 [assessed on 24.11.2023]
[34]
Nordén U (1991) Acid deposition and throughfall fluxes of elements as related to tree species in deciduous forests of South Sweden. Water Air Soil Pollut 60:209–230. https://doi.org/10.1007/BF00282624
[35]
Pohlert T (2023) Non-parametric trend tests and change-point detection. https://cran.r-project.org/web/packages/trend/vignettes/trend.pdf [assessed on 24.11.2023]
[36]
Ponette-González AG, Weathers KC, Curran LM (2010) Water inputs across a tropical montane landscape in Veracruz, Mexico: synergistic effects of land cover, rain and fog seasonality, and interannual precipitation variability. Glob Chang Biol 16(3):946–963. https://doi.org/10.1111/j.1365-2486.2009.01985.x
[37]
Posch M, Aherne J, Moldan F, Evans CD, Forsius M, Larssen T, Helliwell R, Cosby BJ (2019) Dynamic modeling and target loads of sulfur and nitrogen for surface waters in Finland, Norway, Sweden, and the United Kingdom. Environ Sci Technol 53(9):5062–5070. https://doi.org/10.1021/acs.est.8b06356
[38]
Ren ZR, Zhang YQ, Zhang YH (2021) Nitrogen deposition magnifies the positive response of plant community production to precipitation: ammonium to nitrate ratio matters. Environ Pollut 276:116659. https://doi.org/10.1016/j.envpol.2021.116659
[39]
Schaub M, Calatayud V, Ferretti M, Brunialti G, L?vblad G, Krause G, Sanz MJ (2016) Part XV: Monitoring of air quality. In: UNECE ICP Forests Programme Co-ordinating Centre (ed.): Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests. Thünen Institute of Forest Ecosystems Eberswalde Germany 11 p
[40]
Schmitz A, Sanders TGM, Bolte A, Bussotti F, Dirnb?ck T, Johnson J, Pe?uelas J, Pollastrini M, Prescher AK, Sardans J, Verstraeten A, de Vries W (2019) Responses of forest ecosystems in Europe to decreasing nitrogen deposition. Environ Pollut 244:980–994. https://doi.org/10.1016/j.envpol.2018.09.101
[41]
Schwartz JS, Veeneman A, Kulp MA, Renfro JR (2022) Throughfall deposition chemistry in the great smoky mountains national park: landscape and seasonal effects. Water Air Soil Pollut 233:107. https://doi.org/10.1007/s11270-022-05575-z
[42]
Sheng HC, Guo N, Ju CY, Cai TJ (2022) Variation of nutrient fluxes by rainfall redistribution processes in the forest canopy of an urban larch plantation in northeast China. J Forestry Res 33:1259–1269. https://doi.org/10.1007/s11676-021-01407-8
[43]
Slootweg J, Posch M, Hettelingh JP (2016) Modelling and mapping the impacts of atmospheric deposition of nitrogen and sulphur: CCE Status Report 2015 [The Coordination Centre for Effects, CCE: www.wge-cce.org]. National Institute for Public Health and the Environment. The Netherlands, 186 p. https://www.umweltbundesamt.de/sites/default/files/medien/4038/dokumente/2_cce_sr2015.pdf [assessed 27.01.2024]
[44]
State Forest Service (2022) Lithuanian forestry statistics 2021 https://amvmt.lrv.lt/uploads/amvmt/documents/files/Statistika/MiskuStatistika/2021/01%20Misku%20ukio%20statistika%202021_m.pdf [assessed on 24.11.2023]
[45]
Su L, Zhao CM, Xu WT, Xie ZQ (2019) Hydrochemical fluxes in bulk precipitation, throughfall, and stemflow in a mixed evergreen and deciduous broadleaved forest. Forests 10:507. https://doi.org/10.3390/f10060507
[46]
Tan SY, Zhao HR, Yang WQ, Tan B, Ni XY, Yue K, Zhang Y, Wu FZ (2018) The effect of canopy exchange on input of base cations in a subalpine spruce plantation during the growth season. Sci Rep 8(1):9373. https://doi.org/10.1038/s41598-018-27675-9
[47]
Vai?ys M, Karazija S, Kulie?is A, Rutkauskas A (2006) Mi?k? augaviet?s. Mi?ko augavie?i? ?tipai. [Forest sites]. Lutut?, Kaunas. (In Lithuanian)
[48]
Vuorenmaa J, Augustaitis A, Beudert B, Bochenek W, Clarke N, de Wit HA, Dirnb?ck T, Frey J, Hakola H, Kleemola S, Kobler J, Krám P, Lindroos AJ, Lundin L, L?fgren S, Marchetto A, Pecka T, Schulte-Bisping H, Skotak K, Srybny A, Szpikowski J, Ukonmaanaho L, Váňa M, ?kerblom S, Forsius M (2018) Long-term changes (1990–2015) in the atmospheric deposition and runoff water chemistry of sulphate, inorganic nitrogen and acidity for forested catchments in Europe in relation to changes in emissions and hydrometeorological conditions. Sci Total Environ 625:1129–1145. https://doi.org/10.1016/j.scitotenv.2017.12.245
[49]
Whelan MJ, Anderson JM (1996) Modelling spatial patterns of throughfall and interception loss in a Norway spruce (Picea abies) plantation at the plot scale. J Hydrol 186(1–4):335–354. https://doi.org/10.1016/S0022-1694(96)03020-X
[50]
?altauskait? J, Juknys R (2009) Throughfall chemistry and canopy interactions in urban and suburban coniferous stands. EREM 4(50):6–12
[51]
Zhang SL, Liang CP (2012) Effect of a native forest canopy on rainfall chemistry in China’s Qinling Mountains. Environ Earth Sci 67:1503–1513. https://doi.org/10.1007/s12665-012-1594-2
[52]
Zhao HR, Yang WQ, Wu FZ, Tan B (2017) Mixed forest plantations can efficiently filter rainfall deposits of sulfur and chlorine in Western China. Sci Rep 7:41680. https://doi.org/10.1038/srep41680
PDF

Accesses

Citations

Detail

Sections
Recommended

/