Species-specific and generalized allometric biomass models for eight Fagaceae species in the understory of evergreen broadleaved forests in subtropical China

Shengwang Meng1()

PDF
Journal of Forestry Research ›› 2024, Vol. 35 ›› Issue (1) : 69. DOI: 10.1007/s11676-024-01718-6
Original Paper

Species-specific and generalized allometric biomass models for eight Fagaceae species in the understory of evergreen broadleaved forests in subtropical China

  • Shengwang Meng1()
Author information +
History +

Abstract

Quantifying the biomass of saplings in the regeneration component is critical for understanding biogeochemical processes of forest ecosystems. However, accurate allometric equations have yet to be developed in sufficient detail. To develop species-specific and generalized allometric equations, 154 saplings of eight Fagaceae tree species in subtropical China’s evergreen broadleaved forests were collected. Three dendrometric variables, root collar diameter (d), height (h), and crown area (ca) were applied in the model by the weighted nonlinear seemingly unrelated regression method. Using only d as an input variable, the species-specific and generalized allometric equations estimated the aboveground biomass reasonably, with ${R}_{adj}^{2}$ values generally > 0.85. Adding h and/or ca improved the fitting of some biomass components to a certain extent. Generalized equations showed a relatively large coefficient of variation but comparable bias to species-specific equations. Only in the absence of species-specific equations at a given location are generalized equations for mixed species recommended. The developed regression equations can be used to accurately calculate the aboveground biomass of understory Fagaceae regeneration trees in China’s subtropical evergreen broadleaved forests.

Keywords

Allometry / Aboveground biomass / Additivity / Regeneration / Subtropical China

Cite this article

Download citation ▾
Shengwang Meng. Species-specific and generalized allometric biomass models for eight Fagaceae species in the understory of evergreen broadleaved forests in subtropical China. Journal of Forestry Research, 2024, 35(1): 69 https://doi.org/10.1007/s11676-024-01718-6

References

[1]
Ali A, Xu MS, Zhao YT, Zhang QQ, Zhou LL, Yang XD, Yan ER (2015) Allometric biomass equations for shrub and small tree species in subtropical China. Silva Fenn 49:1275. https://doi.org/10.14214/sf.1275
[2]
Ameztegui A, Rodrigues M, Granda V (2022) Uncertainty of biomass stocks in Spanish forests: a comprehensive comparison of allometric equations. Eur J for Res 141:395–407. https://doi.org/10.1007/s10342-022-01444-w
[3]
Av L, Ak?a A (2007) Forest Mensuration. Springer, Netherlands, p 201
[4]
Behling A, Netto SP, Sanquetta CR, Corte APD, Affleck DLR, Rodrigues AL, Behling M (2018) Critical analyses when modeling tree biomass to ensure additivity of its components. An Acad Bras Cienc 90:1759–1774. https://doi.org/10.1590/0001-3765201820170684
[5]
Bi HQ, Turner J, Lambert MJ (2004) Additive biomass equations for native eucalypt forest trees of temperate Australia. Trees-Struct Funct 18:467–479. https://doi.org/10.1007/s00468-004-0333-z
[6]
Brantley ST, Schulte ML, Bolstad PV, Miniat CF (2016) Equations for estimating biomass, foliage area, and sapwood of small trees in the southern appalachians. For Sci 62:414–421. https://doi.org/10.5849/forsci.15-041
[7]
Carvalho JP, Parresol BR (2003) Additivity in tree biomass components of Pyrenean oak (Quercus pyrenaica Willd.). For Ecol Manage 179:269–276. https://doi.org/10.1016/S0378-1127(02)00549-2
[8]
Chave J, Andalo C, Brown S, Cairns MA, Chambers JQ, Eamus D, Folster H, Fromard F, Higuchi N, Kira T, Lescure JP, Nelson BW, Ogawa H, Puig H, Riera B, Yamakura T (2005) Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145:87–99. https://doi.org/10.1007/s00442-005-0100-x
[9]
Chave J, Rejou-Mechain M, Burquez A, Chidumayo E, Colgan MS, Delitti WBC, Duque A, Eid T, Fearnside PM, Goodman RC, Henry M, Martinez-Yrizar A, Mugasha WA, Muller-Landau HC, Mencuccini M, Nelson BW, Ngomanda A, Nogueira EM, Ortiz-Malavassi E, Pelissier R, Ploton P, Ryan CM, Saldarriaga JG, Vieilledent G (2014) Improved allometric models to estimate the aboveground biomass of tropical trees. Glob Change Biol 20:3177–3190. https://doi.org/10.1111/gcb.12629
[10]
Dimobe K, Mensah S, Goetze D, Ouédraogo A, Kuyah S, Porembski S, Thiombiano A (2018) Aboveground biomass partitioning and additive models for Combretum glutinosum and Terminalia laxiflora in West Africa. Biomass Bioenerg 115:151–159. https://doi.org/10.1016/j.biombioe.2018.04.022
[11]
Djomo AN, Chimi CD (2017) Tree allometric equations for estimation of above, below and total biomass in a tropical moist forest: Case study with application to remote sensing. For Ecol Manage 391:184–193. https://doi.org/10.1016/j.foreco.2017.02.022
[12]
Djomo AN, Ibrahima A, Saborowski J, Gravenhorst G (2010) Allometric equations for biomass estimations in Cameroon and pan moist tropical equations including biomass data from Africa. For Ecol Manage 260:1873–1885. https://doi.org/10.1016/j.foreco.2010.08.034
[13]
Feldpausch TR, Lloyd J, Lewis SL, Brienen RJW, Gloor M, Monteagudo Mendoza A, Lopez-Gonzalez G, Banin L, Abu Salim K, Affum-Baffoe K, Alexiades M, Almeida S, Amaral I, Andrade A, Aragao LEOC, Araujo Murakami A, Arets EJMM, Arroyo L, Aymard GA, Baker TR, Banki OS, Berry NJ, Cardozo N, Chave J, Comiskey JA, Alvarez E, de Oliveira A, Di Fiore A, Djagbletey G, Domingues TF, Erwin TL, Fearnside PM, Franca MB, Freitas MA, Higuchi N, Honorio E, Iida Y, Jimenez E, Kassim AR, Killeen TJ, Laurance WF, Lovett JC, Malhi Y, Marimon BS, Marimon-Junior BH, Lenza E, Marshall AR, Mendoza C, Metcalfe DJ, Mitchard ETA, Neill DA, Nelson BW, Nilus R, Nogueira EM, Parada A, Peh KSH, Pena Cruz A, Penuela MC, Pitman NCA, Prieto A, Quesada CA, Ramirez F, Ramirez-Angulo H, Reitsma JM, Rudas A, Saiz G, Salomao RP, Schwarz M, Silva N, Silva-Espejo JE, Silveira M, Sonke B, Stropp J, Taedoumg HE, Tan S, ter Steege H, Terborgh J, Torello-Raventos M, van der Heijden GMF, Vasquez R, Vilanova E, Vos VA, White L, Willcock S, Woell H, Phillips OL (2012) Tree height integrated into pantropical forest biomass estimates. Biogeosciences 9:3381–3403. https://doi.org/10.5194/bg-9-3381-2012
[14]
Gibbs HK, Brown S, Niles JO, Foley JA (2007) Monitoring and estimating tropical forest carbon stocks: making REDD a reality. Environ Res Lett 2:045023. https://doi.org/10.1088/1748-9326/2/4/045023
[15]
Goodman RC, Phillips OL, Baker TR (2014) The importance of crown dimensions to improve tropical tree biomass estimates. Ecol Appl 24:680–698. https://doi.org/10.1890/13-0070.1
[16]
Henry M, Picard N, Trotta C, Manlay RJ, Valentini R, Bernoux M, Saint-Andre L (2011) Estimating tree biomass of sub-saharan African forests: a review of available allometric equations. Silva Fenn 45:477–569. https://doi.org/10.14214/sf.38
[17]
Huang C, Feng C, Ma Y, Liu H, Wang Z, Yang S, Wang W, Fu S, Chen HYH (2021) Allometric models for aboveground biomass of six common subtropical shrubs and small trees. J Forestry Res 33:1317–1328. https://doi.org/10.1007/s11676-021-01411-y
[18]
Huff S, Poudel KP, Ritchie M, Temesgen H (2018) Quantifying aboveground biomass for common shrubs in northeastern California using nonlinear mixed effect models. For Ecol Manage 424:154–163. https://doi.org/10.1016/j.foreco.2018.04.043
[19]
Kang XG (2011) Forest Management, 4th edn. China Forestry Publishing House, China, p 90 (in Chinese)
[20]
Kozak A (1970) Methods for ensuring additivity of biomass components by regression analysis. Forest Chron 46:402–405. https://doi.org/10.5558/tfc46402-5
[21]
Kuyah S, Dietz J, Muthuri C, Jamnadass R, Mwangi P, Coe R, Neufeldt H (2012) Allometric equations for estimating biomass in agricultural landscapes: I. Aboveground Biomass Agr Ecosyst Environ 158:216–224. https://doi.org/10.1016/j.agee.2012.05.011
[22]
MacFarlane DW (2015) A generalized tree component biomass model derived from principles of variable allometry. For Ecol Manage 354:43–55. https://doi.org/10.1016/j.foreco.2015.06.038
[23]
Menéndez-Miguélez M, Calama R, Del Río M, Madrigal G, López-Senespleda E, Pardos M, Ruiz-Peinado R (2022) Species-specific and generalized biomass models for estimating carbon stocks of young reforestations. Biomass Bioenerg 161:106453. https://doi.org/10.1016/j.biombioe.2022.106453
[24]
Meng S, Yang F, Hu S, Wang H, Wang H (2021) Generic additive allometric models and biomass allocation for two natural oak species in Northeastern China. Forests 12:715. https://doi.org/10.3390/f12060715
[25]
Mensah S, Veldtman R, Seifert T (2017) Allometric models for height and aboveground biomass of dominant tree species in South African Mistbelt forests. South for: J for Sci 79:19–30. https://doi.org/10.2989/20702620.2016.1225187
[26]
Muukkonen P (2007) Generalized allometric volume and biomass equations for some tree species in Europe. Eur J for Res 126:157–166. https://doi.org/10.1007/s10342-007-0168-4
[27]
Nilsson MC, Wardle DA (2005) Understory vegetation as a forest ecosystem driver: evidence from the northern Swedish boreal forest. Front Ecol Environ 3:421–428. https://doi.org/10.2307/3868658
[28]
Packard GC (2009) On the use of logarithmic transformations in allometric analyses. J Theor Biol 257:515–518. https://doi.org/10.1016/j.jtbi.2008.10.016
[29]
Pajtik J, Konopka B, Lukac M (2008) Biomass functions and expansion factors in young Norway spruce (Picea abies L. Karst) trees. For Ecol Manage 256:1096–1103. https://doi.org/10.1016/j.foreco.2008.06.013
[30]
Pajtik J, Konopka B, Lukac M (2011) Individual biomass factors for beech, oak and pine in Slovakia: a comparative study in young naturally regenerated stands. Trees-Struct Funct 25:277–288. https://doi.org/10.1007/s00468-010-0504-z
[31]
Parresol BR (1999) Assessing tree and stand biomass: a review with examples and critical comparisons. For Sci 45:573–593. https://doi.org/10.1093/forestscience/45.4.573
[32]
Parresol BR (2001) Additivity of nonlinear biomass equations. Can J for Res 31:865–878. https://doi.org/10.1139/cjfr-31-5-865
[33]
R Core Team (2022) R: A language and environment for statistical computing. R Foundation for Statistical Computing.
[34]
Randriamalala JR, Radosy HO, Ramanakoto M, Razafindrahanta H, Ravoninjatovo J-M, Haingomanantsoa RS, Ramananantoandro T (2022) Allometric models to predict the individual aboveground biomass of shrubs of Malagasy xerophytic thickets. J Arid Environ 202:104751. https://doi.org/10.1016/j.jaridenv.2022.104751
[35]
Sah JP, Ross MS, Koptur S, Snyder JR (2004) Estimating aboveground biomass of broadleaved woody plants in the understory of Florida Keys pine forests. For Ecol Manage 203:319–329. https://doi.org/10.1016/j.foreco.2004.07.059
[36]
Sanquetta CR, Behling A, Corte APD, Péllico Netto S, Schikowski AB, do Amaral MK (2015) Simultaneous estimation as alternative to independent modeling of tree biomass. Ann for Sci 72:1099–1112. https://doi.org/10.1007/s13595-015-0506-5
[37]
Sileshi GW (2014) A critical review of forest biomass estimation models, common mistakes and corrective measures. For Ecol Manage 329:237–254. https://doi.org/10.1016/j.foreco.2014.06.026
[38]
Siqing B, Meng S, Liu L, Zhou G, Yu J, Xu Z, Liu Q (2022) Additive allometric equations to improve aboveground biomass estimation for Mongolian pine plantations in Mu Us Sandy land, Inner Mongolia. China for 13:1672. https://doi.org/10.3390/f13101672
[39]
Sprugel DG (1983) Correcting for bias in log-transformed allometric equations. Ecology 64(1):209–210. https://doi.org/10.2307/1937343
[40]
Trautenmüller JW, Péllico Netto S, Balbinot R, Watzlawick LF, Dalla Corte AP, Sanquetta CR, Behling A (2021) Regression estimators for aboveground biomass and its constituent parts of trees in native southern Brazilian forests. Ecol Indic 130:108025. https://doi.org/10.1016/j.ecolind.2021.108025
[41]
Wang CK (2006) Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests. For Ecol Manage 222:9–16. https://doi.org/10.1016/j.foreco.2005.10.074
[42]
Xiang W, Li L, Ouyang S, Xiao W, Zeng L, Chen L, Lei P, Deng X, Zeng Y, Fang J, Forrester DI (2021) Effects of stand age on tree biomass partitioning and allometric equations in Chinese fir (Cunninghamia lanceolata) plantations. Eur J for Res 140:317–332. https://doi.org/10.1007/s10342-020-01333-0
[43]
Xiao X, White EP, Hooten MB, Durham SL (2011) On the use of log-transformation vs. nonlinear regression for analyzing biological power laws. Ecology 92:1887–1894. https://doi.org/10.1890/11-0538.1
[44]
Zeng W, Duo H, Lei X, Chen X, Wang X, Pu Y, Zou W (2017) Individual tree biomass equations and growth models sensitive to climate variables for Larix spp. in China. Eur J for Res 136:233–249. https://doi.org/10.1007/s10342-017-1024-9
[45]
Zhang Y, Onda Y, Kato H, Feng B, Gomi T (2022) Understory biomass measurement in a dense plantation forest based on drone-SfM data by a manual low-flying drone under the canopy. J Environ Manage 312:114862. https://doi.org/10.1016/j.jenvman.2022.114862
[46]
Zhao D, Kane M, Markewitz D, Teskey R, Clutter M (2015) Additive tree biomass equations for midrotation loblolly pine plantations. For Sci 61:613–623. https://doi.org/10.5849/forsci.14-193
[47]
Zianis D, Xanthopoulos G, Kalabokidis K, Kazakis G, Ghosn D, Roussou O (2011) Allometric equations for aboveground biomass estimation by size class for Pinus brutia Ten. trees growing in North and South Aegean Islands. Greece Eur J for Res 130:145–160. https://doi.org/10.1007/s10342-010-0417-9
PDF

Accesses

Citations

Detail

Sections
Recommended

/