Litterfall production modeling based on climatic variables and nutrient return from stands of Eucalyptusgrandis Hill ex Maiden and Pinustaeda L.

Andrés Baietto1(), Andrés Hirigoyen2, Jorge Hernández3, Amabelia del Pino3

PDF
Journal of Forestry Research ›› 2024, Vol. 35 ›› Issue (1) : 61. DOI: 10.1007/s11676-024-01706-w
Original Paper

Litterfall production modeling based on climatic variables and nutrient return from stands of Eucalyptusgrandis Hill ex Maiden and Pinustaeda L.

  • Andrés Baietto1(), Andrés Hirigoyen2, Jorge Hernández3, Amabelia del Pino3
Author information +
History +

Abstract

Native grasslands in the Pampas of South America are increasingly being replaced by Eucalyptus and Pinus stands. The short rotation regimes used for the stands require high nutrient levels, with litterfall being a major source of nutrient return. To model the litterfall production using climatic variables and assess the nutrient return in 14-year-old Eucalyptusgrandis and Pinustaeda stands, we measured litter production over 2 years, using conical litter traps, and monitored climatic variables. Mean temperature, accumulated precipitation, and mean maximum vapor pressure deficit at the seasonal level influenced litterfall production by E.grandis; seasonal accumulated precipitation and mean maximum temperature affected litterfall by P.taeda. The regression tree modeling based on these climatic variables had great accuracy and predictive power for E.grandis (N = 33; MAE (mean absolute error) = 0.65; RMSE (root mean square error) = 0.91; R2 = 0.71) and P.taeda (N = 108; MAE = 1.50; RMSE = 1.59; R2 = 0.72). The nutrient return followed a similar pattern to litterfall deposition, as well as the order of importance of macronutrients (E.grandis: Ca > N > K > Mg > P; P.taeda: N > Ca > K > Mg > P) and micronutrients (E.grandis and P.taeda: Mn > Fe > Zn > Cu) in both species. This study constitutes a first approximation of factors that affect litterfall and nutrient return in these systems.

Keywords

Afforestation / Litterfall / Nutrient recycling / Climate modeling / Myrtaceae / Pinaceae

Cite this article

Download citation ▾
Andrés Baietto, Andrés Hirigoyen, Jorge Hernández, Amabelia del Pino. Litterfall production modeling based on climatic variables and nutrient return from stands of Eucalyptusgrandis Hill ex Maiden and Pinustaeda L.. Journal of Forestry Research, 2024, 35(1): 61 https://doi.org/10.1007/s11676-024-01706-w

References

[1]
Albaugh TJ, Allen HL, Stape JL, Fox TR, Rubilar RA, Price JW (2012) Intra-annual nutrient flux in Pinus taeda. Tree Physiol 32:1237–1258. https://doi.org/10.1093/treephys/tps082
[2]
Baietto A, Hernández J, del Pino A (2021a) Comparative dynamics of above-ground litter production and decomposition from Eucalyptus grandis Hill ex Maiden and Pinus taeda L., and their contribution to soil organic carbon. Forests 12:349. https://doi.org/10.3390/f12030349
[3]
Baietto A, Hirigoyen A, Hernández J, del Pino A (2021b) comparative dynamics of nutrient release through litter decomposition in Eucalyptus grandis Hill ex Maiden and Pinus taeda L. stands. Forests 12:1227. https://doi.org/10.3390/f12091227
[4]
Baker AC (2009) The dynamics of litterfall in eucalypt woodland surrounding pine plantations. PhD Thesis, University of Technology, Sydney, p 223
[5]
Berg B, Meentemeyer V (2001) Litter fall in some European coniferous forests as dependent on climate: a synthesis. Can J Res 31:292–301. https://doi.org/10.1139/x00-172
[6]
Bessaad A, Korboulewsky N (2020) How much does leaf leaching matter during the pre-drying period in a whole-tree harvesting system? For Ecol Manag 477:118492. https://doi.org/10.1016/j.foreco.2020.118492
[7]
Blanco JA, Imbert JB, Castillo FJ (2006) Influence of site characteristics and thinning intensity on litterfall production in two Pinus sylvestris L. forests in the western Pyrenees. For Ecol Manag 237:342–352. https://doi.org/10.1016/j.foreco.2006.09.057
[8]
Bremner JM, Mulvaney CS (1982) Nitrogen-total. In: Methods of soil analysis. Part 2. Chemical and microbiological properties. Soil Science Society of America, Madison, WI, pp 595-624
[9]
Bueis T, Bravo F, Pando V, Turrión MB (2018) Local basal area affects needle litterfall, nutrient concentration, and nutrient release during decomposition in Pinus halepensis Mill. plantations in Spain. Ann For Sci 75:21. https://doi.org/10.1007/s13595-018-0699-5
[10]
Casta?o JP, Giménez A, Ceroni M, Furest J, Aunchayna R (2011) Caracterización Agroclimática del Uruguay 1980–2009. Instituto Nacional de Investigación Agropecuaria, Montevideo
[11]
Chase CW, Kimsey MJ, Shaw TM, Coleman MD (2016) The response of light, water, and nutrient availability to pre-commercial thinning in dry inland Douglas-fir forests. For Ecol Manag 363:98–109. https://doi.org/10.1016/j.foreco.2015.12.014
[12]
Chave J, Navarrete D, Almeida S, álvarez E, Arag?o LEOC, Bonal D, Chatelet P, Silva-Espejo JE, Goret JY, von Hildebrand P, Jiménez E, Pati?o S, Pe?uela MC, Philips OL, Stevenson P, Malhi Y (2010) Regional and seasonal patterns of litterfall in tropical South America. Biogeosciences 7:43–55. https://doi.org/10.5194/bg-7-43-2010
[13]
Cheng CH, Lee CY, Lee HR, Chen CP, Menyailo OV (2020) Effects of typhoon disturbances on seasonal and interannual patterns of litterfall on coniferous and broadleaf plantations in Xitou, central Taiwan. J For Res 25:155–162. https://doi.org/10.1080/13416979.2020.1762026
[14]
Crockford RH, Richardson DP (1998) Litterfall, litter and associated chemistry in a dry sclerophyll eucalypt forest and a pine plantation in south-eastern Australia: 1 Litterfall and Litter. Hydrol Process 12:365–384. https://doi.org/10.1002/(SICI)1099-1085(19980315)12:3%3c365::AID-HYP588%3e3.0.CO;2-0
[15]
da Silva PHM, Poggiani F, Laclau JP (2011) Applying sewage sludge to Eucalyptus grandis plantations: effects on biomass production and nutrient cycling through litterfall. Appl Environ Soil Sci 2011:1–11. https://doi.org/10.1155/2011/710614
[16]
de Queiroz MG, da Silva TGF, Zolnier S, de Souza CAA, de Souza LSB, Neto S, de Araújo GGL, Ferreira WPM (2019) Seasonal patterns of deposition litterfall in a seasonal dry tropical forest. Agric For Meteorol 279:107712. https://doi.org/10.1016/j.agrformet.2019.107712
[17]
Demessie A, Singh BR, Lal R, Strand LT (2011) Leaf litter fall and litter decomposition under Eucalyptus and coniferous plantations in Gambo District, southern Ethiopia. Acta Agric Scand Sect B Soil Plant Sci. https://doi.org/10.1080/09064710.2011.645497
[18]
Erkan N, Comez A, Aydin AC, Denli O, Erkan S (2018) Litterfall in relation to stand parameters and climatic factors in Pinus brutia forests in Turkey. Scand J For Res 33:338–346. https://doi.org/10.1080/02827581.2017.1406135
[19]
Espinosa J, Rodríguez De Rivera ó, Madrigal J, Guijarro M, Hernando C (2020) Use of Bayesian modeling to determine the effects of meteorological conditions, prescribed burn season, and tree characteristics on litterfall of Pinus nigra and Pinus pinaster stands. Forests 11:1006. https://doi.org/10.3390/f11091006
[20]
Fan G, Gray JB (2005) Regression tree analysis using target. J Comput Graph Stat 14:206–218. https://doi.org/10.1198/106186005X37210
[21]
Ferreira GWD, Soares EMB, Oliveira FCC, Silva IR, Dungait JA, Souza IF, Verguetz L (2016) Nutrient release from decomposing Eucalyptus harvest residues following simulated management practices in multiple sites in Brazil. For Ecol Manag 370:1–11. https://doi.org/10.1016/j.foreco.2016.03.047
[22]
Finotti R, Freitas SR, Cerqueira R, Vieira MV (2003) A method to determine the minimum number of litter traps in litterfall studies. Biotropica 35:419–421. https://doi.org/10.1111/j.1744-7429.2003.tb00595.x
[23]
Garlet C, Schumacher MV, Dick G, Viera M (2019) Ciclagem de nutrientes em povoamento de Eucalyptus dunnii Maiden: produ??o de serapilheira e devolu??o de macronutrientes no bioma Pampa. Rev Ecol E Nutr Florest 7:05. https://doi.org/10.5902/2316980X37057
[24]
Geng A, Tu Q, Chen J, Wang W, Yang H (2022) Improving litterfall production prediction in China under variable environmental conditions using machine learning algorithms. J Environ Manage 306:114515. https://doi.org/10.1016/j.jenvman.2022.114515
[25]
Giweta M (2020) Role of litter production and its decomposition, and factors affecting the processes in a tropical forest ecosystem: a review. J Ecol Environ 44:11. https://doi.org/10.1186/s41610-020-0151-2
[26]
Gon?alves J, Stape J, Laclau JP, Bouillet JP, Ranger J (2008) Assessing the effects of early silvicultural management on long-term site productivity of fast-growing eucalypt plantations: the Brazilian experience. South For J For Sci 70:105–118. https://doi.org/10.2989/SOUTH.FOR.2008.70.2.6.534
[27]
Goya JF, Frangi JL, Pérez C, Dalla Tea F (2008) Decomposition and nutrient release from leaf litter in Eucalyptus grandis plantations on three different soils in Entre Ríos, Argentina. Bosque Valdivia 29:217–226. https://doi.org/10.4067/S0717-92002008000300005
[28]
Grigg AH, Mulligan DR (1999) Litterfall from two eucalypt woodlands in central Queensland. Austral Ecol 24:662–664. https://doi.org/10.1046/j.1442-9993.1999.00991.x
[29]
Guo LB, Sims REH, Horne DJ (2006) Biomass production and nutrient cycling in Eucalyptus short rotation energy forests in New Zealand: II. Litter fall and nutrient return. Biomass Bioenergy 30:393–404. https://doi.org/10.1016/j.biombioe.2005.11.017
[30]
Hansen K, Vesterdal L, Schmidt IK, Gundersen P, Sevel L, Bastrup-Birk A, Pedersen LB, Bille-Hansen J (2009) Litterfall and nutrient return in five tree species in a common garden experiment. For Ecol Manag 257:2133–2144. https://doi.org/10.1016/j.foreco.2009.02.021
[31]
Hernández J, del Pino A, Salvo L, Arrarte G (2009) Nutrient export and harvest residue decomposition patterns of a Eucalyptus dunnii Maiden plantation in temperate climate of Uruguay. For Ecol Manag 258:92–99. https://doi.org/10.1016/j.foreco.2009.03.050
[32]
Hernández J, del Pino A, Vance ED, Califra A, del Giorgio F, Martínez L, González-Barrios P (2016) Eucalyptus and Pinus stand density effects on soil carbon sequestration. For Ecol Manag 368:28–38. https://doi.org/10.1016/j.foreco.2016.03.007
[33]
Hernández J, Del Pino A, Califra A (2014) Eucalyptus and pine stand spacing density study and its implications for carbon sequestration processes. Final Report. Faculty of Agronomy, Uruguay
[34]
INIA-GRAS (2019) Banco de datos agroclimáticos 1965–2019. Uruguay, Instituto Nacional de Investigación Agropecuaria, http://www.inia.uy/gras/Clima/Banco-datos-agroclimatico
[35]
Isaac RA, Kerber JD (1971) Atomic absorption and flame photometry: techniques and uses in soil, plant, and water analysis. In: Instrumental methods for analysis of soils and plant tissue. Soil Science Society of America, Madison, WI, pp 17–37
[36]
Kang H, Xin Z, Berg B, Burgess JP, Liu Q, Liu Z, Li Z, Liu C (2010) Global pattern of leaf litter nitrogen and phosphorus in woody plants. Ann For Sci 67:811–811. https://doi.org/10.1051/forest/2010047
[37]
K?ppen WP (1936) Das geographische System der Klimate. Borntraeger, Stuttgart, p 44
[38]
Kouki J, Hokkanen T (1992) Long-term needle litterfall of a Scots pine Pinus sylvestris stand: relation to temperature factors. Oecologia 89:176–181. https://doi.org/10.1007/BF00317216
[39]
Kulmann MSDS, Dick G, Schumacher MV (2021) Litterfall and accumulated nutrients in Pinus taeda plantation and native forest in southern Brazil. Forests 12:1791. https://doi.org/10.3390/f12121791
[40]
Li ZA, Zou B, Xia H, Ren H, Mo JM, Weng H (2005) Litterfall dynamics of an evergreen broadleaf forest and a pine forest in the subtropical region of China. For Sci 51:608–615. https://doi.org/10.1093/forestscience/51.6.608
[41]
Liu C, Westman CJ, Berg B, Kutsch W, Wang GZ, Man R, Ilvesniemi H (2004) Variation in litterfall-climate relationships between coniferous and broadleaf forests in Eurasia: litterfall and climate in Eurasia. Glob Ecol Biogeogr 13:105–114. https://doi.org/10.1111/j.1466-882X.2004.00072.x
[42]
Liu X, Zhou T, Luo H, Xu P, Gao S, Liu J (2019) Models ignoring spatial heterogeneities of forest age will significantly overestimate the climate effects on litterfall in China. Sci Total Environ 661:492–503. https://doi.org/10.1016/j.scitotenv.2019.01.162
[43]
Momolli DR, Schumacher MV, Ludvichak AA, dos Santos KF, de Souza HP, Guimar?es CDC (2019b) Nutrient cycling in Eucalyptus dunnii: micronutrients in the litterfall. Floresta 49:641. https://doi.org/10.5380/rf.v49i4.56727
[44]
Momolli DR, Schumacher MV, Viera M, Ludvichak AA, Guimar?es CDC, Souza HPD (2019a) Litterfall and nutrient return in Eucalyptus dunnii Maiden in the pampa biome. Brazil J Agric Sci 11:362. https://doi.org/10.5539/jas.v11n5p362
[45]
Morrison IK (1991) Effect of trap dimensions on mass of litterfall collected in an Acer saccharum stand in northern Ontario. Can J For Res 21:939–941. https://doi.org/10.1139/x91-130
[46]
Muqaddas B, Lewis T (2020) Temporal variations in litterfall biomass input and nutrient return under long-term prescribed burning in a wet sclerophyll forest, Queensland. Australia Sci Total Environ 706:136035. https://doi.org/10.1016/j.scitotenv.2019.136035
[47]
Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36. https://doi.org/10.1016/S0003-2670(00)88444-5
[48]
Nazrul Islam AKM, Jamali T, Hoque AE (2021) Litterfall decomposition of selected plant species and nutrient cycling in Madhupur Sal (Shorea robusta Roth) forest of Bangladesh. In: Singh JS, Tiwari S, Singh C, Singh AK (eds) Microbes in land use change management. Elsevier, pp 173–195
[49]
Pallardy SG (2008) Physiology of woody plants, 3rd edn. Academic Press, San Diego, p 454
[50]
Parsons SA, Valdez-Ramirez V, Congdon RA, Williams SE (2014) Contrasting patterns of litterfall seasonality and seasonal changes in litter decomposability in a tropical rainforest region. Biogeosciences 11:5047–5056. https://doi.org/10.5194/bg-11-5047-2014F
[51]
Piovesan G, Schumacher MV, Viera M, Lopes VG, Welter C (2012) Deposi??o de serapilheira em povoamento de Pinus. Pesqui Agropecuária Trop 42:206–211. https://doi.org/10.1590/S1983-40632012000200012
[52]
Pook EW, Gill AM, Moore PHR (1997) Long-term variation of litter fall, canopy leaf area and flowering in a Eucalyptus maculata forest on the south coast of New South Wales. Aust J Bot 45:737. https://doi.org/10.1071/BT95063
[53]
Raison RJ, Myers BJ, Benson ML (1992) Dynamics of Pinus radiata foliage in relation to water and nitrogen stress: I. Needle production and properties. For Ecol Manag 52:139–158. https://doi.org/10.1016/0378-1127(92)90499-Y
[54]
Reichert JM, Rodrigues MF, Peláez JJZ, Lanza R, Minella JPG, Arnold JG, Cavalcante RBL (2017) Water balance in paired watersheds with eucalyptus and degraded grassland in Pampa biome. Agric For Meteorol 237–238:282–295. https://doi.org/10.1016/j.agrformet.2017.02.014
[55]
Ribeiro FP, Gatto A, Oliveira AD, Pulrolnik K, Ferreira EAB, Carvalho AD, Bussinguer AP, Muller AG, Moraes-Neto SD (2018) Litter dynamics in Eucalyptus and native forest in the Brazilian. Cerrado J Agric Sci. 10:29. https://doi.org/10.5539/jas.v10n11p29
[56]
Schlatter JE, Gerding V, Calderón S (2006) Aporte de la hojarasca al ciclo biogeoquímico en plantaciones de Eucalyptus nitens, X Región Chile. Bosque Valdivia. https://doi.org/10.4067/S0717-92002006000200006
[57]
Shen G, Chen D, Wu Y, Liu L, Liu C (2019) Spatial patterns and estimates of global forest litterfall. Ecosphere 10:e02587. https://doi.org/10.1002/ecs2.2587
[58]
Soil Survey Staff (2014) Keys to soil taxonomy, 12th ed. Department of agriculture: Natural Resources Conservation Service, Washington, DC, p 374
[59]
Thomas PB, Watson PJ, Bradstock RA, Penman TD, Price OF (2014) Modelling surface fine fuel dynamics across climate gradients in eucalypt forests of south-eastern Australia. Ecography 37:827–837. https://doi.org/10.1111/ecog.00445
[60]
Viera M, Schumacher MV (2010) Teores e aporte de nutrientes na serapilheira de Pinus taeda L., e sua rela??o com a temperatura do ar e pluviosidade. Rev árvore 34:85–94. https://doi.org/10.1590/S0100-67622010000100010
[61]
Voigtlaender M, Brandani CB, Caldeira DRM, Tardy F, Bouillet JP, Gon?alves JLM, Moreira MZ, Leite FP, Brunet D, Paula RR, Laclau JP (2019) Nitrogen cycling in monospecific and mixed-species plantations of Acacia mangium and Eucalyptus at 4 sites in Brazil. For Ecol Manag 436:56–67. https://doi.org/10.1016/j.foreco.2018.12.055
[62]
Wang Y, Zheng J, Boyd SE, Xu Z, Zhou Q (2019) Effects of litter quality and quantity on chemical changes during Eucalyptus litter decomposition in subtropical Australia. Plant Soil 442:65–78. https://doi.org/10.1007/s11104-019-04162-2
[63]
Weiss SM, Indurkhya N (1994) Small sample decision tree pruning. In: Cohen WW, Hirsh H (eds) Machine learning proceedings 1994. Morgan Kaufmann, San Francisco, pp 335–342
[64]
Yang Y, Yanai RD, See CR, Arthur MA (2017) Sampling effort and uncertainty in leaf litterfall mass and nutrient flux in northern hardwood forests. Ecosphere 8:. https://doi.org/10.1002/ecs2.1999
[65]
Zhang H, Yuan W, Dong W, Liu S (2014) Seasonal patterns of litterfall in forest ecosystem worldwide. Ecol Complex 20:240–247. https://doi.org/10.1016/j.ecocom.2014.01.003
PDF

Accesses

Citations

Detail

Sections
Recommended

/