Impact of water scarcity on spruce and beech forests

Lenka Krupková, Kateřina Havránková, Jan Krejza, Pavel Sedlák, Michal V. Marek

Journal of Forestry Research ›› 2019, Vol. 30 ›› Issue (3) : 899-909.

Journal of Forestry Research All Journals
Journal of Forestry Research ›› 2019, Vol. 30 ›› Issue (3) : 899-909. DOI: 10.1007/s11676-018-0642-5
Original Paper

Impact of water scarcity on spruce and beech forests

Author information +
History +

Abstract

One of the greatest threats posed by ongoing climate change may be regarded the drought caused by changes in precipitation distribution. The aim of presented study was to characterize reactions to dry conditions and conditions without drought stress on gross primary production (GPP) and net ecosystem production (NEP) of spruce and beech forests, as these two species dominate within the European continent. Daily courses of GPP and NEP of these two species were evaluated in relation to an expected decrease in CO2 uptake during dry days. The occurrence of CO2 uptake hysteresis in daily production was also investigated. Our study was performed at Bílý Kříž (spruce) and Štítná (beech) mountain forest sites during 2010–2012 period. We applied eddy covariance technique for the estimation of carbon fluxes, vapor pressure deficit and precipitation characteristics together with the SoilClim model for the determination of drought conditions, and the inverse of the Penman–Monteith equation to compute canopy conductance. Significant differences were found in response to reduced water supply for both species. Spruce reacts by closing its stomata before noon and maintaining a reduced photosynthetic activity for the rest of the day, while beech keeps its stomata open as long as possible and slightly reduces photosynthetic activity evenly throughout the entire day. In the spruce forest, we found substantial hysteresis in the light response curve of GPP. In the beech forest, the shape of this curve was different: evening values exceeded morning values.

Keywords

Picea abies / Fagus sylvatica / Drought stress / Hysteresis / Eddy covariance

Cite this article

Download citation ▾
Lenka Krupková, Kateřina Havránková, Jan Krejza, Pavel Sedlák, Michal V. Marek. Impact of water scarcity on spruce and beech forests. Journal of Forestry Research, 2019, 30(3): 899‒909 https://doi.org/10.1007/s11676-018-0642-5
This is a preview of subscription content, contact us for subscripton.

References

Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim JH, Allard G, Running SW, Semerci A, Cobb N. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag, 2010, 259: 660-684.
CrossRef Google scholar
Aubinet M, Vesala T, Papale D. Eddy covariance: a practical guide to measurement and data analysis, 2012, Dordrecht: Springer 1 438
CrossRef Google scholar
Bělská M, Benešová N, Bezděčková L, Bílý J, Buchta N, Daňhelka M, Dvořák P, Fabiánek P, Hána J, Hofmeister T, Jankovská Z, Jurásek A, Kahuda J, Knížek M, Kratochvílová L, Krejzar T, Krnáčová L, Kučera M, Liška J, Lojda J, Lomský B, Lubojacký J, Máchová P, Matějíček J, Modlinger R, Neznajová Z, Novotný R, Pařízek M, Pásek F, Pešková V, Radouš M, Riedl M, Šišák L, Slabý R, Smejkal T, Smrž M, Šrámek V, Stránský V, Tomášek V, Ulrich R (2016) Zpráva o stavu lesa a lesního hospodářství České republiky 2015: report on the state of forests and forestry in the Czech Republic 2015. Prague: Lesnická práce, pp 1–132. ISBN 978-80-7434-324-7
Bolte A, Czajkowski T, Kompa T. The north-eastern distribution range of European beech-a review. Forestry, 2007, 80(4): 413-429.
CrossRef Google scholar
Bolte A, Ammer C, Lof M, Madsen P, Nabuurs GJ, Schall P, Spathelf P, Rock J. Adaptive forest management in central Europe: climate change impacts, strategies and integrative concept. Scand J For Res, 2009, 24: 473-482.
CrossRef Google scholar
Bréda N, Huc R, Granier A, Dreyer E. Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann For Sci, 2006, 63: 625-644.
CrossRef Google scholar
Breshears DD, Cobb NS, Rich PM, Price KP, Allen CD, Balice RG, Romme WH, Kastens JH, Floyd ML, Belnap J, Anderson JJ, Myers OB, Meyer CW. Regional vegetation die-off in response to global-change-type drought. Proc Natl Acad Sci, 2005, 102: 15144-15148.
CrossRef Google scholar
Campbell GS, Norman JM. An introduction to environmental biophysics, 1998, New York: Springer 1 286
CrossRef Google scholar
Ciais P, Reichstein M, Viovy N, Granier A, Ogee J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A, Chevallier F, De Noblet N, Friend AD, Friedlingstein P, Grunwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival JM, Papale D, Pilegaard K, Rambal S, Seufert G, Soussana JF, Sanz MJ, Schulze ED, Vesala T, Valentini R. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature, 2005, 437: 529-533.
CrossRef Google scholar
Dai A. Increasing drought under global warming in observations and models. Nat Clim Change, 2013, 3: 52-58.
CrossRef Google scholar
Elkin C, Gutiérrez A, Leuzinger S, Manusch C, Temperli C, Rasche L, Bugmann H. A 2 & #xB0;C warmer world is not safe for ecosystem services in the European Alps. Glob Change Biol, 2013, 19: 1827-1840.
CrossRef Google scholar
Falge E, Baldocchi D, Olson R, Anthoni P, Aubinet M, Bernhofer C, Burba G, Ceulemans R, Clement R, Dolman H, Granier A, Gross P, Grunwald T, Hollinger D, Jensen NO, Katul G, Keronen P, Kowalski A, Lai CT, Law BE, Meyers T, Moncrieff H, Moors E, Munger JW, Pilegaard K, Rannik U, Rebmann C, Suyker A, Tenhunen J, Tu K, Verma S, Vesala T, Wilson K, Wofsy S. Gap filling strategies for defensible annual sums of net ecosystem exchange. Agric For Meteorol, 2001, 107: 43-69.
CrossRef Google scholar
Falge E, Baldocchi D, Tenhunen J, Aubinet M, Bakwin P, Berbigier P, Bernhofer C, Burba G, Clement R, Davis KJ, Elbers JA, Goldstein AH, Grelle A, Granier A, Guomundsson J, Hollinger D, Kowalski AS, Katul G, Law BE, Malhi Y, Meyers T, Monson RK, Munger JW, Oechel W, Paw KT, Pilegaard K, Rannik U, Rebmann C, Suyker A, Valentini R, Wilson K, Wofsy S. Seasonality of ecosystem respiration and gross primary production as, derived from FLUXNET measurements. Agric For Meteorol, 2002, 113(1–4): 53-74.
CrossRef Google scholar
Felton A, Nilsson U, Sonesson J, Felton AM, Roberge JM, Ranius T, Ahlstrom M, Bergh J, Bjorkman C, Boberg J, Drossler L, Fahlvik N, Gong P, Holmstrom E, Keskitalo ECH, Klapwijk MJ, Laudon H, Lundmark T, Niklasson M, Nordin A, Pettersson M, Stenlid J, Stens A, Wallertz K. Replacing monocultures with mixed-species stands: ecosystem service implications of two production forest alternatives in Sweden. Ambio, 2016, 45: S124-S139.
CrossRef Google scholar
Geßler A, Keitel C, Kreuzwieser J, Matyssek R, Seiler W, Rennenberg H. Potential risks for European beech (Fagus sylvatica L.) in a changing climate. Trees, 2007, 21(1): 1-11.
CrossRef Google scholar
Ghestem M, Sidle RC, Stokes A. The Influence of Plant Root Systems on Subsurface Flow: implications for Slope Stability. Oxf J Sci Math Biosci, 2011, 61(11): 869-879.
Granier A, Biron P, Lemoine D. Water balance, transpiration and canopy conductance in two beech stands. Agric For Meteorol, 2000, 100(4): 291-308.
CrossRef Google scholar
Hájková L (2012) Atlas fenologických poměrů Česka: Atlas of the phenological conditions in Czechia. Prague: Czech hydrometeorological institute, pp 1–311. ISBN 978-80-86690-98-8
Hikosaka K. Modelling optimal temperature acclimation of the photosynthetic apparatus in C-3 plants with respect to nitrogen use. Ann Bot, 1997, 80(6): 721-730.
CrossRef Google scholar
Hlasny T, Holusa J, Stepanek P, Turcani M, Polcak N. Expected impacts of climate change on forests: Czech Republic as a case study. J For Sci, 2011, 57(10): 422-431.
CrossRef Google scholar
Hlavinka P, Trnka M, Balek J, Semeradova D, Hayes M, Svoboda M, Eitzinger J, Mozny M, Fischer M, Hunt E, Zalud Z. Development and evaluation of the SoilClim model for water balance and soil climate estimates. Agric Water Manag, 2011, 98: 1249-1261.
CrossRef Google scholar
Jankovsky L, Palovcikova D. Dieback of Austrian pine: the epidemic occurrence of Sphaeropsis sapinea in southern Moravia. J For Sci, 2003, 49(8): 389-394.
CrossRef Google scholar
Johnson IR, Thornley JHM. Temperature dependence of plant and crop processes. Ann Bot, 1985, 55: 1-24.
CrossRef Google scholar
Kanalas P, Fenyvesi A, Kis J, Szőllősi E, Olah V, Ander I, Mészáros I. Seasonal and diurnal variability in sap flow intensity of mature sessile oak (Quercus petraea (Matt.) Liebl.) trees in relation to microclimatic conditions. Acta Biol Hung, 2010, 61(Suppl 1): 95-108.
CrossRef Google scholar
Kenderes K, Mihók B, Standovár T. Thirty years of gap dynamics in a central European beech forest reserve. For, 2008, 81(1): 111-123.
Kenk G, Guehne S. Management of transformation in Central Europe. For Ecol Manag, 2001, 151: 107-119.
CrossRef Google scholar
Kodrík J, Kodrík M. Root biomass of beech as a factor influencing the wind tree stability. J For Sci, 2002, 48(12): 549-564.
CrossRef Google scholar
Körner C. Schulze ED, Caldwell MM. Leaf diffusive conductances in the major vegetation types of the globe. Ecophysiology of photosynthesis, 1995, Berlin: Springer 463 490
CrossRef Google scholar
Köstner B, Falge EM, Alsheimer M, Geyer R, Tenhunen JD. Estimating tree canopy water use via xylem sapflow in an old Norway spruce forest and a comparison with simulation-based canopy transpiration estimates. Ann Sci For, 1998, 55(1–2): 125-139.
CrossRef Google scholar
Larcher W. Physiological plant ecology: ecophysiology and stress physiology of functional groups, 2003, Berlin: Springer 1 513
CrossRef Google scholar
Lasslop G, Reichstein M, Papale D, Richardson AD, Arneth A, Barr A, Stoy P, Wohlfahrt G. Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: critical issues and global evaluation. Glob Chang Biol, 2010, 16: 187-208.
CrossRef Google scholar
Launiainen S. Seasonal and inter-annual variability of energy exchange above a boreal Scots pine forest. Biogeosci, 2010, 7: 3921-3940.
CrossRef Google scholar
Leuschner C. Die Trockenheitsempfindlichkeit der Rotbuche vordem Hintergrund des prognostizierten Klimawandels, 2009, Göttingen: Jahrbuchder Akademie der Wissenschaften zu Göttingen 281 296
Lindner M, Maroschek M, Netherer S, Kremer A, Barbati A, Garcia-Gonzalo J, Seidl R, Delzon S, Corona P, Kolstrom M, Lexer MJ, Marchetti M. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For Ecol Manag, 2010, 259: 698-709.
CrossRef Google scholar
Lyr H, Fiedler HJ, Tranquillini W. Physiologie und Ökologieder Gehölze, 1992, Jena: G. Fischer Verlag 1 620
Mäkinen H, Isomäki A. Thinning intensity and growth of Norway spruce stands in Finland. Forestry, 2004, 77(4): 349-364.
CrossRef Google scholar
Marková I, Janouš D, Pavelka M, Macků J, Havránková K, Rejšek K, Marek MV. Potential changes in Czech forest soil carbon stocks under different climate change scenarios. J For Sci, 2016, 62: 537-544.
CrossRef Google scholar
Mauder M, Foken T. Impact of post-field data processing on eddy covariance flux estimates and energy balance closure. Meteorol Z, 2006, 15(6): 597-609.
CrossRef Google scholar
McDowell NG. Darcy’s law predicts widespread forest mortality under climate warming. Nat Clim Chang, 2015, 5: 669-672.
CrossRef Google scholar
Michaelis L, Menten ML. The kinetics of the inversion effect. Biochem Z, 1913, 49: 333-369.
Nadezhdina N, Urban J, Cermak J, Nadezhdin V, Kantor P. Comparative study of long-term water uptake of Norway spruce and Douglas-fir in Moravian upland. J Hydrol Hydromech, 2014, 62(1): 1-6.
CrossRef Google scholar
Nguyen NQ. Anatomical, physiological and molecular responses of European beech (Fagus sylvatica L.) to drought. Dissertation, 2016, Göttingen: Georg-August-University of Göttingen 1 119
Panshin AJ, de Zeeuw C. Textbook of wood technology: structure, identification, properties, and uses of the commercial woods of the United States and Canada, 1980 4 New York: Mcgraw-Hill College 1 722
Pingintha N, Leclerc MY, Beasley JP, Durden D, Zhang G, Senthong C, Rowland D. Hysteresis response of daytime net ecosystem exchange during drought. Biogeosciences, 2010, 7: 1159-1170.
CrossRef Google scholar
Pretzsch H, Schütze G, Uhl E. Resistance of European tree species to drought stress in mixed versus pure forests: evidence of stress release by inter-specific facilitation. Plant Biol, 2013, 15: 483-495.
CrossRef Google scholar
Pretzsch H, Rotzer T, Matyssek R, Grams TEE, Haberle KH, Pritsch K, Kerner R, Munch JC. Mixed Norway spruce (Picea abies [L.] Karst) and European beech (Fagus sylvatica [L.]) stands under drought: from reaction pattern to mechanism. Trees, 2014, 28(5): 1305-1321.
CrossRef Google scholar
Pretzsch H, del Rio M, Ammer C Growth and yield of mixed versus pure stands of Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) analysed along a productivity gradient through Europe. Eur J For Res, 2015, 134: 927-947.
CrossRef Google scholar
Rabinowitch EI. Photosynthesis and related processes, 1951, New York: Interscience Publishers 1 608
Reichstein M, Falge E, Baldocchi D, Papale D, Aubinet M, Berbigier P, Bernhofer C, Buchmann N, Gilmanov T, Granier A, Grunwald T, Havrankova K, Ilvesniemi H, Janous D, Knohl A, Laurila T, Lohila A, Loustau D, Matteucci G, Meyers T, Miglietta F, Ourcival JM, Pumpanen J, Rambal S, Rotenberg E, Sanz M, Tenhunen J, Seufert G, Vaccari F, Vesala T, Yakir D, Valentini R. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Glob Chang Biol, 2005, 11(9): 1424-1439.
CrossRef Google scholar
Rouault G, Candau JN, Lieutier F, Nageleisen LM, Martin JC, Warzee N. Effects of drought and heat on forest insect populations in relation to the 2003 drought in Western Europe. Ann For Sci, 2006, 63: 613-624.
CrossRef Google scholar
Spitters CJT, Toussaint HAJM, Goudriaan J. Separating the diffuse and direct component of global radiation and its implications for modeling canopy photosynthesis. Part I. Components of incoming radiation. Agric For Meteorol, 1986, 38: 217-229.
CrossRef Google scholar
Teuffel K, Heinrich B, Baumgarten M Spiecker H, Hansen J, Klimo E Present distribution of secondary Norway spruce in Europe. Norway spruce conversion—options and consequences, 2004, Boston: Brill 63 96
Trnka M, Muska F, Semeradova D, Dubrovsky M, Kocmankova E, Zalud Z. European Corn Borer life stage model: regional estimates of pest development and spatial distribution under present and future climate. Ecol Modell, 2007, 207: 61-84.
CrossRef Google scholar
Úradníček L, Maděra P. Dřeviny České republiky, 2001, Písek: Matice lesnická 1 333
Urban O, Klem K, Ac A, Havrankova K, Holisova P, Navratil M, Zitova M, Kozlova K, Pokorny R, Sprtova M, Tomaskova I, Spunda V, Grace J. Impact of clear and cloudy sky conditions on the vertical distribution of photosynthetic CO2 uptake within a spruce canopy. Funct Ecol, 2012, 26(1): 46-55.
CrossRef Google scholar
van´t Hoff JH (1898) Part I. Chemical dynamics. In Lectures on theoretical and physical chemistry. London: Edward Arnold, pp 1–254
Vicente-Serrano SM, Gouveia C, Camarero JJ Response of vegetation to drought time-scales across global land biomes. Proc Natl Acad Sci USA, 2013, 110(1): 52-57.
CrossRef Google scholar
Zang C, Rothe A, Weis W, Pretzsch H. Zur Baumarteneignung bei Klimawandel: ableitung der Trockenstress-Anfälligkeit wichtiger Waldbaumarten aus Jahrring-breiten. Allg For J Ztg, 2011, 182: 98-112.
Zlatanov T, Elkin C, Irauschek F, Lexer MJ. Impact of climate change on vulnerability of forests and ecosystem service supply in Western Rhodopes Mountains. Reg Environ Change, 2017, 17: 79-91.
CrossRef Google scholar

7

Accesses

21

Citations

Detail

Sections
Recommended

/