[1] BATES H C,KING A J,HANNA K L D,et al. Linking mineralogy and spectroscopy of highly aqueously altered CM and CI carbonaceous chondrites in preparation for primitive asteroid sample return[J]. Meteoritics & Planetary Science,2020,1(71-101):13411.
[2] DEMEO F E,BINZEL R P,SLIVAN S M,et al. An extension of the Bus asteroid taxonomy into the near-infrared[J]. Icarus,2009,202(1):160-180
[3] GEHRELS T. Asteroids III[M]. Tucson,AZ:University of Arizona Press,2002.
[4] AMELIN Y,KROT A N,HUTCHEON I D,et al. Lead isotopic ages of chondrules and calcium-aluminum-rich inclusions[J]. Science,2002,297(5587):1678-1683
[5] BINZEL R P,GEHRELS T,MATTHEWS M S. Asteroids II[M]. Tucson,AZ:The University of Arizona Press,1989.
[6] ALEXANDER C M O,BOWDEN R,FOGEL M L,et al. The provenances of asteroids,and their contributions to the volatile inventories of the terrestrial planets[J]. Science,2012,337(6095):721-723
[7] MARUYAMA S, EBISUZAKI T, KUROKAWA K. Origin and evolution of Earth and life: towards the establishment of astrobiology from universe to genome[C]//Proceedings of Frontier Research in Astrophysics – III — PoS(FRAPWS2018). Mondello (Palermo), Italy: Sissa Medialab, 2019.
[8] BECK P. Hydrous mineralogy of CM and CI chondrites from infrared spectroscopy and their relationship with low albedo asteroids[J]. Geochimica et Cosmochimica Acta,2010,74(16):4881-4892
[9] TAKIR D,EMERY J P,MCSWEEN H Y,et al. Nature and degree of aqueous alteration in CM and CI carbonaceous chondrites[J]. Meteoritics & Planetary Science,2013:48(9),1618-1637.
[10] BECK P,GARENNE A,QUIRICO E,et al. Transmission infrared spectra (2–25 lm) of carbonaceous chondrites (CI,CM,CV-CK,CR,C2 ungrouped): mineralogy,water,and asteroidal processes[J]. Icarus,2014,229:263-277
[11] GARENNE A. Bidirectional reflectance spectroscopy of carbonaceous chondrites:Implications for water quantification and primary composition[J]. Icarus,2016,264:172-183
[12] KING A J. Characterising the CI and CI-like carbonaceous chondrites using thermogravimetric analysis and infrared spectroscopy[J]. Earth,Planets and Space,2015,67:198
[13] RUSSELL C T,RAYMOND C A. The Dawn mission to Vesta and Ceres[J]. Space Science Reviews,2011,163(1):3-23
[14] LAURETTA D S,BALRAM-KNUTSON S S,BESHORE E,et al. OSIRIS-REx:sample return from Asteroid (101955) Bennu[J]. Space Science Reviews,2017,212(1):925-984
[15] TSUDA Y,YOSHIKAWA M,ABE M,et al. System design of the Hayabusa 2—asteroid sample return mission to 1999 JU3[J]. Acta Astronautica,2013,91:356-362
[16] LEVISON H F,OLKIN C,NOLL K S,et al. Lucy:surveying the diversity of the trojan asteroids:the fossils of planet formation[C]//Proceedings of 48th Annual Lunar and Planetary Science Conference. The Woodlands,Texas:[s. n. ]:2017.
[17] CANTILLO D C, REDDY V, SHARKEY B N L, et al. Constraining the regolith composition of Asteroid (16) Psyche via laboratory visible near-infrared spectroscopy[EB/OL]. (2021)[2022-08-19]. https://doi.org/10.3847/PSJ/abf63b.
[18] HIROI T, ZOLENSKY M E, PIETERS C M. The Tagish Lake meteorite: a possible sample from a d-type asteroid[J]. Science, 2001, 293(5538): 2234-2236.
[19] GILMOUR C M,HERD C D K,BECK P. Water abundance in the Tagish Lake meteorite from TGA and IR spectroscopy:evaluation of aqueous alteration[J]. Meteoritics & Planetary Science, 2019, 54(9): 1951-1972.
[20] CLARK R N. Detection of adsorbed water and hydroxyl on the Moon[J]. Science,2009,326(5952):562-564
[21] LI S,LUCEY P G,MILLIKEN R E,et al. Direct evidence of surface exposed water ice in the lunar polar regions[J]. Proceedings of the National Academy of Sciences of the United States of America,2018,115(36):8907-8912
[22] MILLIKEN R E,MUSTARD J F. Estimating the water content of hydrated minerals using reflectance spectroscopy II. effects of particle size[J]. Icarus,2007,189(2):574-588
[23] MILLIKEN R E,MUSTARD J F. Estimating the water content of hydrated minerals using reflectance spectroscopy I. effects of darkening agents and low-albedo materials[J]. Icarus,2007,189(2):550-573
[24] DUAN A,WU Y,CLOUTIS E A,et al. Heating of carbonaceous materials:insights into the effects of thermal metamorphism on spectral properties of carbonaceous chondrites and asteroids[J]. Meteoritics & Planetary Science,2021,56(11):2035-2046
[25] SIMON A A,KAPLAN H H,HAMILTON V E,et al. Widespread carbon-bearing materials on near-Earth asteroid (101955) Bennu[J]. Science :2020,370(6517):eabc3522.
[26] HONNIBALL C I. Molecular water detected on the sunlit Moon by SOFIA[J]. Nature Astronomy,2021,5(2):121-127
[27] BATES H C,HANNA K L D,KING A J,et al. A spectral investigation of aqueously and thermally altered CM,CM‐An,and CY chondrites under simulated asteroid conditions for comparison with OSIRIS‐REx and Hayabusa2 observations[J]. Journal of Geophysical Research,2021,126(7):e2021JE006827
[28] BECK P, MATURILLI A, GARENNE A, et al. What is controlling the reflectance spectra (0.35-150 μm) of hydrated (and dehydrated) carbonaceous chondrites?[J]. Icarus, 20183, 13: 124-138.
[29] RUBIN A E,TRIGO-RODRÍGUEZ J M,HUBER H,et al. Progressive aqueous alteration of CM carbonaceous chondrites[J]. Geochimica et Cosmochimica Acta,2007,71(9):2361-2382
[30] HOWARD K T,BENEDIX G K,BLAND P A,et al. Modal mineralogy of CM2 chondrites by X-ray diffraction (PSD-XRD). part 1:total phyllosilicate abundance and the degree of aqueous alteration[J]. Geochimica et Cosmochimica Acta,2009,73(15):4576-4589
[31] MILLIKEN R E,HIROI T,PATTERSON W. The NASA Reflectance Experiment Laboratory (RELAB) facility:past,present,and future[C]//Proceedings of 47th Annual Lunar and Planetary Science Conference. The Woodlands,Texas:NASA,2016.
[32] CLOUTIS E A,HUDON P,HIROI T,et al. Spectral reflectance properties of carbonaceous chondrites:2. CM chondrites[J]. Icarus,2011,216(1):309-346
[33] MCADAM M M. Aqueous alteration on asteroids:linking the mineralogy and spectroscopy of CM and CI chondrites[J]. Icarus,2015,245:320-332
[34] BROWNING L B,MCSWEEN H Y,ZOLENSKY M E. Correlated alteration effects in CM carbonaceous chondrites[J]. Geochimica et Cosmochimica Acta,1996,60(14):2621-2633
[35] BROWNING L,MCSWEEN JR. H Y,ZOLENSKY M E. On the origin of rim textures surrounding anhydrous silicate grains in CM carbonaceous chondrites[J]. Meteoritics & Planetary Science,2000,35(5):1015-1023
[36] LEBOFSKY L A. Infrared reflectance spectra of asteroids :a search for water of hydration.[J]. The Astronomical Journal,1980,85:573-585
[37] RIVKIN A S,DAVIES J K,JOHNSON J R,et al. Hydrogen concentrations on C-class asteroids derived from remote sensing[J]. Meteoritics & Planetary Science,2003,38(9):1383-1398
[38] TAKIR D,EMERY J P. Outer Main Belt asteroids:Identification and distribution of four 3-μm spectral groups[J]. Icarus,2012,219(2):641-654
[39] HOWELL E,RIVKIN A,SODERBERG A,et al. Aqueous alteration of asteroids:correlation of the 3 μm and 0.7 μm hydration bands[J]. Bulletin of the American Astronomical Society,1999,31:1074.
[40] VILAS F. A cheaper,faster,better way to detect water of hydration on solar system bodies[J]. Icarus,1994,111(2):456-467
[41] USUI F, HASEGAWA S, OOTSUBO T, et al. AKARI/IRC near-infrared asteroid spectroscopic survey: AcuA-spec[EB/OL]. [2023-02-27]. https://academic.oup.com/pasj/article/doi/10.1093/pasj/psy125/5238131.
[42] CAMPINS H,HARGROVE K,PINILLA-ALONSO N,et al. Water ice and organics on the surface of the asteroid 24 Themis[J]. Nature,2010,464(7293):1320-1321
[43] BECK P,QUIRICO E,SEVESTRE D,et al. Goethite as an alternative origin of the 3.1 μm band on dark asteroids[J]. Astronomy & Astrophysics,2011,526:A85
[44] KUROKAWA H, SHIBUYA T, SEKINE Y, et al. Distant formation and differentiation of outer main belt asteroids and carbonaceous chondrite parent bodies[J]. AGU Advances, 2022, 3(1): e2021AV000568. DOI:10.1029/2021AV000568.
[45] KITAZATO K,MILLIKEN R E,IWATA T,et al. The surface composition of asteroid 162173 Ryugu from Hayabusa2 near-infrared spectroscopy[J]. Science,2019,364(6437):272-275
[46] GALIANO A,PALOMBA E,D’AMORE M,et al. Characterization of the Ryugu surface by means of the variability of the near-infrared spectral slope in NIRS3 data[J]. Icarus,2020,351:113959
[47] KITAZATO K,MILLIKEN R E,IWATA T,et al. Thermally altered subsurface material of asteroid (162173) Ryugu[J]. Nature Astronomy,2021,5(3):246-250
[48] HAMILTON V E,SIMON A A,CHRISTENSEN P R,et al. Evidence for widespread hydrated minerals on asteroid (101955) Bennu[J]. Nature Astronomy,2019,3(4):332-340
[49] PILORGET C,OKADA T,HAMM V,et al. First compositional analysis of Ryugu samples by the MicrOmega hyperspectral microscope[J]. Nature Astronomy,2022,6(2):221-225.
[50] AMANO K,MATSUOKA M,NAKAMURA T,et al. Reassigning CI chondrite parent bodies based on reflectance spectroscopy of samples from carbonaceous asteroid Ryugu and meteorites[J]. Science Advances,2023,9(49):eadi3789.
[51] NAKAMURA T, MATSUMOTO M, AMANO K, et al. Formation and evolution of carbonaceous asteroid Ryugu: direct evidence from returned samples[J]. Science,2022,379(6634):eabn8671