[1] SCHMIDT N. Planetary defense:global collaboration for defending Earth from asteroids and comets[M]. Berlin:Springer,2018.
[2] GONG Z,LI M,CHEN C,et al. The frontier science and key technologies of asteroid monitoring and early warning,security defense and resource utilization[J]. Chinese Science Bulletin,2019,65(5):346-372.
[3] Jet Propulsion Laboratory. Discovery statistics[EB/OL]. (2020-05-15)[2023-02-16].https://cneos.jpl.nasa.gov/stats/.
[4] PITZ A,KAPLINGER B,VARDAXIS G,et al. Conceptual design of a hypervelocity asteroid intercept vehicle (HAIV) and its flight validation mission[J]. Acta Astronautica,2014,94(1):42-56.
[5] YAMAGUCHI K,PARK J H,GU X,et al. Orbital dynamics of gravity tractor spacecraft employing artificial halo orbit[J]. Acta Astronautica,2022,198:376-387.
[6] SPITALE J N. Asteroid hazard mitigation using the Yarkovsky effect[J]. Science,2002,296(5565):77.
[7] LI M,WANG Y,WANG Y,et al. Enhanced kinetic impactor for deflecting large potentially hazardous asteroids via maneuvering space rocks[J]. Scientific Reports,2020,10(1):8506.
[8] HOLSAPPLE K A,HOUSEN K R. Momentum transfer in asteroid impacts. I. theory and scaling[J]. Icarus,2012,221(2):875-887.
[9] CHENG A F,MICHEL P,JUTZI M,et al. Asteroid impact & deflection assessment mission:kinetic impactor[J]. Planetary and Space Science,2016,121:27-35.
[10] A'HEARN M F,BELTON M J S,DELAMERE W A,et al. Deep Impact:excavating comet Tempel 1[J]. Science,2005,310(5746):258-264.
[11] RICHARDSON J E,MELOSH H J,LISSE C M,et al. A ballistics analysis of the Deep Impact ejecta plume:determining Comet Tempel 1's gravity,mass,and density[J]. Icarus,2007,191(2):176-209.
[12] BENSCH F,MELNICK G J,NEUFELD D A,et al. Submillimeter wave astronomy satellite observations of Comet 9P/Tempel 1 and Deep Impact[J]. Icarus,2006,184(2):602-610.
[13] RIVKIN A S,CHABOT N L,STICKLE A M,et al. The double asteroid redirection test (DART):planetary defense investigations and requirements[J]. The Planetary Science Journal,2021,2(5):173.
[14] THOMAS C A, NAIDU S P, SCHEIRICH P, et al. Orbital period change of Dimorphos due to the DART kinetic impact[J]. Nature, 2023, 616(7957):448-451.
[15] SCHIRBER M. Spacecraft crash slows down asteroid orbit by 32 minutes[J]. Physics,2022,15:156.
[16] CHENG A F, AGRUSA H F, BARBEE B W, et al. Momentum transfer from the DART mission kinetic impact on asteroid Dimorphos[J]. Nature, 2023, 616(7957):457-460.
[17] HOUSEN K R,HOLSAPPLE K A. Experimental measurements of momentum transfer in hypervelocity collisions[C]//Proceedings of 46th Annual Lunar and Planetary Science Conference. Texas,USA:2015.
[18] RADUCAN S D,DAVISON T M,COLLINS G S. Ejecta distribution and momentum transfer from oblique impacts on asteroid surfaces[J]. Icarus,2022,374:114793.
[19] VEVERKA J,THOMAS P C,ROBINSON M,et al. Imaging of small-scale features on 433 Eros from NEAR:evidence for a complex regolith[J]. Science,2001,292(5516):484-488.
[20] FUJIWARA A,KAWAGUCHI J,YEOMANS D K,et al. The rubble-pile asteroid Itokawa as observed by Hayabusa[J]. Science,2006,312(5778):1330-1334.
[21] WADA K,ISHIBASHI K,KIMURA H,et al. Size of particles ejected from an artificial impact crater on asteroid 162173 Ryugu[J]. Astronomy & Astrophysics,2021,647:A43.
[22] 王亚林,刘鹏,吴辉阳,等. 碎石堆构造小行星表面地形分析与仿真验证[J]. 深空探测学报(中英文),2019,6(5):481-487.WANG Y L,LIU P,WU H Y,et al. Terrain analysis and simulation verification on rubble-pile-constructed asteroid surfaces[J]. Journal of Deep Space Exploration,2019,6(5):481-487.
[23] MAZROUEI S,DALY M,BARNOUIN O,et al. Distribution of boulders on asteroid 25143 itokawa[C]//Proceedings of 43rd Annual Lunar and Planetary Science Conference. Texas, USA:[s. n.],2012.
[24] RADUCAN S D,JUTZI M,ZHANG Y,et al. Reshaping and ejection processes on rubble-pile asteroids from impacts[J]. Astronomy & Astrophysics,2022,665:L10.
[25] STEINBERG D. Equation of state and strength properties of selected materials[M]. Livermore:Lawrence Livermore National Laboratory,1996.
[26] LAINE L, SANDVIK A. Derivation of mechanical properties for sand[C]//Proceedings of the 4th Asia-Pacific Conference on Shock and impact loads on structures, CI-Premier PTE LTD. Singapore:ANSYS Inc.,2001.
[27] YOKOYAMA T,NAGASHIMA K,NAKAI I,et al. Samples returned from the asteroid Ryugu are similar to Ivuna-type carbonaceous meteorites[J]. Science,2022,379(6634):eabn7850.
[28] POHL L,BRITT D T. Strengths of meteorites-an overview and analysis of available data[J]. Meteoritics & Planetary Science,2020,55(4):962-987.
[29] ROZEHNAL J,BROŽ M,NESVORNÝ D,et al. SPH simulations of high-speed collisions between asteroids and comets[J]. Icarus,2022,383:115064.
[30] SAITO T,KAIHO K,ABE A,et al. Numerical simulations of hypervelocity impact of asteroid/comet on the Earth[J]. International Journal of Impact Engineering,2006,33(1-12):713-722.
[31] OSINSKI G R,PIERAZZO E. Impact cratering:processes and products[M]. West Sussex, UK:Blackwell Publishing Ltd,2013.
[32] KUROSAWA K,OKAMOTO T,GENDA H. Hydrocode modeling of the spallation process during hypervelocity impacts:implications for the ejection of Martian meteorites[J]. Icarus,2018,301:219-234.
[33] SHUVALOV V. A mechanism for the production of crater rays[J]. Meteoritics & Planetary Science,2012,47(2):262-267.
[34] SABUWALA T,BUTCHER C,GIOIA G,et al. Ray systems in granular cratering[J]. Physical Review Letters,2018,120(26):264501.
[35] MELOSH H J. Impact ejection,spallation,and the origin of meteorites[J]. Icarus,1984,59(2):234-260.
[36] DELLER J,LOWRY S,PRICE M,et al. SPH simulations of impacts on rubble pile asteroids[C]//Proceedings of European Planetary Science Congress. UK:[s. n.]:2013.
[37] MOROTA T,SUGITA S,CHO Y,et al. Sample collection from asteroid (162173) Ryugu by Hayabusa2:implications for surface evolution[J]. Science,2020,368(6491):654-659.
[38] ORMÖ J,RADUCAN S D,JUTZI M,et al. Boulder exhumation and segregation by impacts on rubble-pile asteroids[J]. Earth and Planetary Science Letters,2022,594:117713.