[1] 崔平远. 深空探测:空间拓展的战略制高点[J]. 人民论坛·学术前沿,2017(5):13-18
CUI P Y. Deep space exploration:strategic height of space expansion[J]. People’s Forum. Academic Frontier,2017(5):13-18
[2] 于登云,张兴旺,张明,等. 小天体采样探测技术发展现状及展望[J]. 航天器工程,2020,29(2):1-10
YU D Y,ZHANG X W,ZHANG M,et al. Current status and prospects of small object sampling and detection technology[J]. Spacecraft Engineering,2020,29(2):1-10
[3] 赵凡宇,徐瑞,崔平远. 启发式深空探测器任务规划方法[J]. 宇航学报,2015,36(5):496-503
ZHAO F Y,XU R,CUI P Y. Heuristic mission planning method for deep space probes[J]. Journal of Astronautics,2015,36(5):496-503
[4] 姜啸,徐瑞,朱圣英. 基于约束可满足的深空探测任务规划方法研究[J]. 深空探测学报(中英文),2018,5(3):262-268
JIANG X,XU R,ZHU S Y. Research on constrained satisfiable deep space mission planning method[J]. Journal of Deep Space Exploration,2018,5(3):262-268
[5] 姜啸,徐瑞,陈俐均. 深空探测器动态约束规划中的外延约束过滤方法研究[J]. 深空探测学报(中英文),2019,6(6):586-594
JIANG X,XU R,CHEN L J. Study on extensive constraint filtering method for dynamic constraint planning of deep space detector[J]. Journal of Deep Space Exploration,2019,6(6):586-594
[6] 金颢,徐瑞,朱圣英,等. 适用于深空探测器的时间线转移路标启发式规划方法[J]. 宇航学报,2021,42(7):862-872
JIN B,XU R,ZHU S Y,et al. Time line transfer landmark heuristic planning method for deep space detector[J]. Journal of Astronautics,2021,42(7):862-872
[7] 赵宇庭,徐瑞,李朝玉,等. 基于动态智能体交互图的深空探测器任务规划方法[J]. 深空探测学报(中英文),2021,8(5):519-527
ZHAO Y T,XU R,LI C Y,et al. Mission planning method for deep space probe based on dynamic agent interaction diagram[J]. Journal of Deep Space Exploration,2021,8(5):519-527
[8] 王晓晖,李爽. 深空探测器约束简化与任务规划方法研究[J]. 宇航学报,2016,37(7):768-774
WANG X H,LI S. Research on constraint simplification and task planning method for deep space detector[J]. Journal of Astronautics,2016,37(7):768-774
[9] 冯小恩,李玉庆,杨晨,等. 面向自主运行的深空探测航天器体系结构设计及自主任务规划方法[J]. 控制理论与应用,2019,36(12):2035-2041
FENG X E,LI Y Q,YANG C,et al. Architecture design and autonomous mission planning for autonomous deep space exploration spacecraft[J]. Control Theory and Application,2019,36(12):2035-2041
[10] 王鑫,赵清杰,徐瑞. 基于知识图谱的深空探测器任务规划建模[J]. 深空探测学报(中英文),2021,8(3):315-323
WANG X,ZHAO Q J,XU R. Modeling of deep space probe mission planning based on knowledge map[J]. Journal of Deep Space Exploration,2021,8(3):315-323
[11] 李玉庆,徐敏强,王日新. 航天器观测重调度问题中的模糊性不确定因素及其处理[J]. 宇航学报,2009,30(3):1106-1111
Li Y Q,XU M Q,WANG R X. Fuzzy uncertainty factors in spacecraft observation rescheduling problem and their processing[J]. Journal of Astronautics,2009,30(3):1106-1111
[12] 贺东雷,冯小恩,雷明佳,等. 面向深空探测任务的实数遗传编码多星任务规划算法[J]. 控制理论与应用,2019,36(12):2055-2064
HE D L,FENG X E,LEI M J,et al. Real-number genetic encoding multistar mission planning algorithm for deep space mission[J]. Control Theory and Application,2019,36(12):2055-2064
[13] SUTTON R S, BARTO AG. Reinforcement learning:an introduction[J]. IEEE Transactions on Neural Networks,1998,9(5):1054.
[14] 史兼郡,张进,罗亚中,等. 基于深度强化学习算法的空间站任务重规划方法[J]. 载人航天,2020,26(4):469-476
SHIJ J,ZHANG J,LUO Y Z,et al. Space station task replanning method based on deep enhanced learning algorithm[J]. Manned Space,2020,26(4):469-476
[15] 伍国威,崔本杰,曲耀斌,等. 基于深度强化学习的卫星实时引导任务规划方法及系统:中国,CN111950873A[P]. 2022-11-15.
WU G W,CUI B J,QU Y B,et al. Satellite real-time guidance mission planning method and system based on deep reinforcement learning:China,CN111950873A[P]. 2022-11-15.
[16] 郭林杰. 基于深度强化学习的跳跃式小行星探测器规划策略研究[D]. 哈尔滨:哈尔滨工业大学,2019.
GUO L J. Study on planning strategy of skip asteroid detector based on deep reinforcement learning [D]. Harbin:Harbin University of Technology,2019.
[17] FURFARO R,LINARES R. Deep learning for autonomous lunar landing[C]// Proceedings of AAS/AIAA Astrodynamics Specialist Conference. [S. l.]:AIAA,2018.
[18] HECKE K V,DE CROON G C H E,HENNES D,et al. Self-supervised learning as an enabling technology for future space exploration robots:ISS experiments on monocular distance learning[J]. Acta Astronautica,2017:S0094576517302862.
[19] 徐瑞,李朝玉,朱圣英,等. 深空探测器自主规划技术研究进展[J]. 深空探测学报(中英文),2021,8(2):111-123
XU R,LI C Y,ZHU S Y,et al. Progress in deep space explorer autonomous planning[J]. Journal of Deep Space Exploration,2021,8(2):111-123
[20] 刘志荣,姜树海. 基于强化学习的移动机器人路径规划研究综述[J]. 制造业自动化,2019,41(3):90-92
LIU Z R,JIANG S H. A review of path planning for mobile robots based on reinforcement learning[J]. Manufacturing Automation,2019,41(3):90-92
[21] 俞胜平,韩忻辰,袁志明,等. 基于策略梯度强化学习的高铁列车动态调度方法[J]. 控制与决策,2022(9):2407-2417.
YU S P,HAN X C,YUAN Z M,et al. Dynamic scheduling method of high-speed train based on policy gradient reinforcement learning [J]. Control and Decision, 2022(9):2407-2417.
[22] 张淼,张琦,刘文韬,等. 一种基于策略梯度强化学习的列车智能控制方法[J]. 铁道学报,2020,42(1):69-75
ZHANG B,ZHANG Q,LIU W T,et al. A train intelligent control method based on strategic gradient enhanced learning[J]. Journal of Railways,2020,42(1):69-75
[23] 周飞燕,金林鹏,董军. 卷积神经网络研究综述[J]. 计算机学报,2017,40(6):1229-1251
ZHOU F Y,JIN L P,DONG J. A review of convolution neural networks[J]. Journal of Computer Science,2017,40(6):1229-1251
[24] 李高杨,吕晓鹏,张星. 基于强化学习的交通信号控制及深度学习应用[J]. 人工智能,2020(3):84-9
LI G Y,LV X P,ZHANG X. Application of traffic signal control and in-depth learning based on reinforcement learning[J]. Artificial Intelligence,2020(3):84-9