[1] STANTON R,OHTAKAY H,MILLER J,et al. Demonstration of optical navigation measurements on Mariner 10[C]//Proceedings of the 13th Aerospace Sciences Meeting. Pasadena:AIAA,1975.
[2] RIEDEL J,OWEN J,STUVE J,et al. Optical navigation during the Voyager neptune encounter[C]//Proceedings of Astrodynamics Conference. Portland:AIAA,1990.
[3] ANTREASIAN P,ARDALAN S,CRIDDLE K,et al. Orbit determination processes for the navigation of the Cassini-Huygens mission[C]//Proceedings of Space Ops 2008 Conference. Heidelberg:JPL,2008.
[4] MACKENZIE R,SALVADOR D L,MILLIGAN D,et al. Orbit determination of the Smart-1 mission[C]//Proceedings of the 18th International Symposium on Space Flight Dynamics. Munich,Germany:JPL,2004.
[5] 杨孟飞,代树武,王颖,等. 太阳空间探测进展与展望[J]. 中国空间科学技术,2022,42(5):1-10
YANG M F,DAI S W,WANG Y,et al. Progress and prospect of solar exploration in space[J]. Chinese Space Science and Technology,2022,42(5):1-10
[6] FARAHANIFAR M,ASSADIAN N. Integrated magnetometer-horizon sensor low-Earth orbit determination using UKF[J]. Acta Astronautica,2015,106:13-23
[7] 房建成,宁晓琳,刘劲. 航天器自主天文导航原理与方法[M]. 第二版,北京:国防工业出版社,2017.
FANG J C,NING X L,LIU J. Pcinciples and method of spacecraft celestial navigation[J]. 2nd Edition,Beijing:National Industrial Press,2017.
[8] DUXBURY T C,BORN G,JERATH N. Viewing phobos and deimos for navigating mariner 9[J]. Journal of Spacecraft and Rockets,1974,11(4):215-222
[9] ROURKE K,ACTON C,BRECKENRIDGE W,et al. The determination of the interplanetary orbits of Vikings 1 and 2[C]//Proceedings of the 15th Aerospace Sciences Meeting. Los Angeles:AIAA,1977.
[10] ANTREASIAN P,ARDALAN S,BORDI J,et al. Cassini orbit determination results january 2006-end of prime mission[C]// Proceedings of AIAA/AAS Astrodynamics Specialist Conference and Exhibit. Honolulu:AIAA,2008.
[11] BHASKARAN S,DESAI S,DUMONT P,et al. Orbit determination performance evaluation of the deep space 1 autonomous navigation system[C]//Proceedings of the 8th Annual Space Flight Mechanics Meeting. California:AIAA,1998.
[12] STANBRIDGE D,WILLIAMS K,WILLIAMS B,et al. Lucy:Navigating a Jupiter trojan tour[C]//Proceeding of AAS/AIAA Astrodynamics Specialist Conference. Stevenson:AIAA,2017.
[13] LESSAC-CHENEN E J,ADAM C D,NELSON D,et al. Optical navigation operations and preparations for the lucy trojan-asteroid mission[C]//Proceedings of AIAA SCITECH 2022 Forum. San Diego:AIAA,2022.
[14] WILLIAMS B,ANTREASIAN P,CARRANZA E,et al. OSIRIS-REx flight dynamics and navigation design[J]. Space Science Reviews,2018,214(4):69
[15] LORENZ D A,OLDS R,MAY A,et al. Lessons learned from OSIRIS-REx autonomous navigation using natural feature tracking[C]//Proceedings of the 2017 IEEE Aerospace Conference. Big Sky:IEEE,2017.
[16] ATCHISON J A,ABRAHAMSON M,OZIMEK M T,et al. Double asteroid redirection test (DART)mission design and navigation for low energy escape[C]//Proceeding of the 69th International Astronautical Congress. Bremen:IAC,2018.
[17] ADAMS E,O’SHAUGHNESSY D,REINHART M,et al. Double asteroid redirection test:the Earth strikes back[C]//Proceedings of 2019 IEEE Aerospace Conference. Big Sky:IEEE,2019.
[18] MCQUAIDE M,ATCHISON J,BELLEROSE J,et al. Double Asteroid Redirection Test(DART)phase D mission design & navigation analysis[C]//Proceedings of the 7th IAC Planetary Defense Conference. Vienna:IAC,2021.
[19] FOING B H,RACCA G D,MARINI A,et al. SMART-1 Mission to the Moon:Status,First Results and Goals[J]. Advances in Space Research,2006,37(1):6-13
[20] MARINI A E,RACCA G D,FOING B H. SMART-1 technology preparation for future planetary missions[J]. Advances in Space Research,2002,30(8):1895-1900
[21] 黄欣,王立,卢欣. 嫦娥一号卫星紫外月球敏感器[J]. 空间控制技术与应用,2021,34(1):51-55.
HUANG X,WANG L,LU X. An ultraviolet lunar sensor for CE-1 spacecraft[J]. Aerospace Control and Application,2021,34(1):51-55.
[22] 叶培建. 嫦娥一号卫星的技术进步点[J]. 中国航天,2008(4):9-12
YE P J. Chang'e 1 technical progress points[J]. Aerospace China,2008(4):9-12
[23] 王立,吴奋陟,梁潇. 我国深空探测光学敏感器技术发展与应用[J]. 红外与激光工程,2020,49(5):33-38
WANG L,WU F S,LIANG X. Technical development and application of China deep space exploration optical sensor[J]. Infrared and Laser Engineering,2020,49(5):33-38
[24] 于萍,张洪华,李骥,等. 嫦娥五号着陆上升组合体 GNC 系统设计与实现[J]. 中国科学:技术科学,2021,51(7):763-777
YU P,ZHANG H H,LI J,et al. Design and implementation of GNC system of lander and ascender module of Chang’e-5 spacecraft[J]. Scientia Sinica(Technologica),2021,51(7):763-777
[25] 强祺昌,林宝军,刘迎春,等. 深空探测自主导航技术综述[J]. 导航与控制,2023,22(1):19-32
QIANG Q C,LIN B J,LIU Y C,et al. Review of autonomous navigation technology for deep space exploration[J]. Navigation and Control,2023,22(1):19-32
[26] MITCHELL J W,HASSOUNEH M,WINTERNITZ L,et al. SEXTANT-station explorer for X-ray timing and navigation technology[C]//Proceedings of AIAA Guidance,Navigation,and Control Conference. Kissimmee,Florida:AIAA,2015.
[27] HANSON J E. Principles of X-ray navigation[M]. Stanford:Stanford University,1996.
[28] CHESTER T J,BUTMAN S A. Navigation using X-ray pulsars:81N27129[R]. Pasadena,CA:JPL,1981.
[29] DOWNS G S. Interplanetary Navigation using pulsating radio sources:74N34150[R]. Pasadena,CA:JPL,1974.
[30] SHEIKH S I,PINES D J,RAY P S,et al. Spacecraft navigation using X-ray pulsars[J]. Journal of Guidance,Control,and Dynamics,2006,29(1):49-63
[31] SHEIKH S I,PINES D J,RAY P S,et al. The use of X-ray pulsars for spacecraft navigation[J]. Advances in the Astronautical Science,2005,119(1):105-119
[32] SHEIKH S I. The use of variable celestial X-ray sources for spacecraft navigation[M]. Baltimore:University of Maryland,2005.
[33] GENDREAU K C,ARZOUMANIAN Z,OKAJIMA T. The Neutron star Interior Composition ExploreR(NICER):an Explorer mission of opportunity for soft x-ray timing spectroscopy[C]//Proceedings of Be X-Ray Binary Systems (BeXRB) 2014 Workshop. Valencia:NASA,2012.
[34] WANG Y D,ZHENG W,ZHANG S,et al. Review of X-ray pulsar spacecraft autonomous navigation[EB/OL]. (2023-3-14)[2023-4-1]https://pdf.sciencedirectassets.com/274151/AIP/1-s2.0-S1000936123000584/main.pdf?.
[35] 帅平,陈绍龙,吴一帆,等. X射线脉冲星导航原理[J]. 宇航学报,2007,28(6):1538-1543
SHUAI P,CHEN S L,WU Y F,et al. Navigation principle using X-ray pulsars[J]. Journal of Astronautics,2007,28(6):1538-1543
[36] 帅平,李明,陈绍龙. X射线脉冲星导航系统原理与方法[M]. 北京:中国宇航出版社,2009.
[37] 帅平,陈绍龙,吴一帆. X射线脉冲星导航技术研究进展[J]. 空间科学学报,2007,27(2):169-176
SHUAI P,CHEN S L,WU Y F. Research progress of X-ray pulsar navigation technology[J]. Chinese Journal of Space Science,2007,27(2):169-176
[38] LIU J,MA J,TIAN J. Pulsar/CNS integrated navigation based on federated UKF[J]. Journal of Systems Engineering and Electronics,2010,21(4):675-681
[39] JIN L,JIE M,JINWEN T. CNS/pulsar integrated navigation using two-level filter[J]. Chinese Journal of Electronics,2010,19(2):265-269
[40] LIU J,KANG Z W,WHITE P,et al. Doppler/XNAV–integrated navigation system using small-area X-ray sensor[J]. IET Radar,Sonar & Navigation,2011,5(9):1010-1017
[41] LIU J,FANG J CHENG,LIU G,et al. Fractional differentiation-based observability analysis method for nonlinear X-ray pulsar navigation system[J]. Proceedings of the Institution of Mechanical Engineers,Part G:Journal of Aerospace Engineering,2018,232(8):1467-1478
[42] LIU J,FANG J C,KANG Z W,et al. Novel algorithm for X-ray pulsar navigation against doppler effects[J]. IEEE Transactions on Aerospace and Electronic Systems,2015,51(1):228-241
[43] KAI X,CHUNLING W,LIANGDONG L. The use of X-ray pulsars for aiding navigation of satellites in constellations[J]. Acta Astronautica,2009,64(4):427-436
[44] XIONG K,WEI C,LIU L. Robust multiple model adaptive estimation for spacecraft autonomous navigation[J]. Aerospace Science and Technology,2015,42:249-258
[45] NING X,YANG Y,LI Z,et al. Ephemeris corrections in celestial/pulsar navigation using time differential and ephemeris estimation[J]. Journal of Guidance,Control,and Dynamics,2018,41(1):268-275
[46] NING X,YANG Y,GUI M,et al. Pulsar navigation using time of arrival(TOA)and time differential TOA (TDTOA)[J]. Acta Astronautica,2018,142:57-63
[47] HUANG L,SHUAI P,ZHANG X,et al. Pulsar-based navigation results:data processing of the x-ray pulsar navigation-I telescope[J]. Journal of Astronomical Telescopes,Instruments,and Systems,2019,5(1):018003
[48] 贾淑梅,黄跃,马想,等. 硬 X 射线调制望远镜卫星科学观测应用初步评价[J]. 航天器工程,2018,27(5):167-174
JIA S M,HUANG Y,MA X,et al. Preliminary evaluation for scientific observations application of HXMT satellite[J]. Spacecraft Engineering,2018,27(5):167-174
[49] ZHANG S,ZHANG S,LU F,et al. The insight-HXMT mission and its recent progresses[C]//Proceedings of Space Telescopes and Instrumentation 2018:Ultraviolet to Gamma Ray. Texas:SPIE,2018.
[50] HONG J,ROMAINE S,NITTLER L,et al. CubeSat X-ray telescope (CubeX) for lunar elemental abundance mapping and millisecond X-ray pulsar navigation[C]//Proceedings of the 49th Annual Lunar and Planetary Science Conference. Woodlands:USRA,2018.
[51] 张伟,许俊,黄庆龙,等. 深空天文自主导航技术发展综述[J]. 飞控与探测,2020,3(4):8-16
ZHANG W,XU J,HUANG Q L,et al. Survey of autonomous celestial navigation technology for deep space[J]. Flight Control & Detection,2020,3(4):8-16
[52] 房建成,宁晓琳,马辛,等. 深空探测器自主天文导航技术综述[J]. 飞控与探测,2018,1(1):1-15
FANG J C,NING X L,MA X,et al. A survey of autonomous astronomical navigation technology for deep space detectors[J]. Flight Control & Detection,2018,1(1):1-15
[53] 尤伟. 深空探测天文测速导航多矢量融合机理与估计方法[D]. 哈尔滨:哈尔滨工业大学,2020.
YOU W. Multi-vector integration and estimation of celestial velocity measurement navigation in deep space exploration[D]. Harbin:Harbin institute of Technology,2020.
[54] FRANKLIN R,BIRX D. A study of natural electromagnetic phenomena for space navigation[J]. Proceedings of the IRE,1960,48(4):532-541
[55] GUO Y. Self-contained autonomous navigation system for deep space missions[J]. Advances in the AstronauticalSciences,1999,102(2):1099-1113
[56] GUO Y. Method and apparatus for autonomous solar navigation:AU20010029273[P]. USA:[s. n.],2003.
[57] YIM J R. Autonomous spacecraft orbit navigation[D]. Texas:Texas A&M University,2002.
[58] YIM J R,CRASSIDIS J L,JUNKINS J L. Autonomous orbit navigation of interplanetary spacecraft[J]. Proceedings of Astrodynamics Specialist Conference. Denver:AIAA,2000.
[59] 张伟,陈晓,尤伟,等. 光谱红移自主导航新方法[J]. 上海航天,2013,30(2):32-33
ZHANG W,CHEN X,YOU W,et al. New autonomous navigation method based on redshift[J]. Aerospace Shanghai,2013,30(2):32-33
[60] 张伟,张恒. 天文导航在航天工程应用中的若干问题及进展[J]. 深空探测学报(中英文),2016,3(3):204-213
ZHANG W,ZHANG H. Research on problems of celestial navigation in space engineering[J]. Journal of Deep Space Exploration,2016,3(3):204-213
[61] 尤伟,张伟,马广富. 深空天文测速自主导航速度矢量合成误差传递分析[J]. 中国惯性技术学报,2017,25(3):338-342
YOU W,ZHANG W,MA G F. Analysis on error propagation in velocity vector synthesis of deep-space celestial autonomous navigation based on radial velocity measurement[J]. Journal of Chinese Inertial Technology,2017,25(3):338-342
[62] 张恒,张伟,陈晓. 深空测角测速组合导航系统时间配准方法研究[J]. 深空探测学报(中英文),2017,4(4):373-378
ZHANG H,ZHANG W,CHEN X. Study on deep space time registration method of integrated navigation system based on celestial angle and velocity measurements[J]. Journal of Deep Space Exploration,2017,4(4):373-378
[63] LIU J,WANG T,NING X L,et al. Modelling and analysis of celestial Doppler difference velocimetry navigation considering solar characteristics[J]. IET Radar,Sonar & Navigation,2020,14(12):1897-1904
[64] NING X L,GUI M Z,FANG J C,et al. A novel differential Doppler measurement-aided autonomous celestial navigation method for spacecraft during approach phase[J]. IEEE Transactions on Aerospace and Electronic Systems,2017,53(2):587-597
[65] ZHANG W,YANG Y,YOU W,et al. Autonomous navigation method and technology implementation of high-precision solar spectral velocity measurement[J]. Science China Physics,Mechanics & Astronomy,2022,65(8):289606
[66] MA X,NING X L,FANG J C. Analysis of orbital dynamic equation in navigation for a Mars gravity-assist mission[J]. The Journal of Navigation,2012,65(3):531-548
[67] 李卓. 深空探测器接近/捕获段自主天文导航误差分析与处理[D]. 北京:北京航空航天大学,2016.
LI Z. Error analysis and treatment for deep space celestial navigation during approach/capture phase[D]. Beijing:Beihang University,2016.
[68] 王融,熊智,刘建业,等. 一种星敏感器安装误差标定模型仿真研究[J]. 系统仿真技术,2013,9(4):287-291,298
WANG R,XIONG Z,LIU J Y,et al. Study on installation error calibration model simulation of star sensor[J]. System Simulation Technology,2013,9(4):287-291,298
[69] BHASKARAN S,RIEDEL J,SYNNOTT S,et al. The Deep Space 1 autonomous navigation system-A post-flight analysis[C]//Proceedings of Astrodynamics Specialist Conference. Denver,CO:AIAA,2000.
[70] WANG Y,ZHENG W,SUN S,et al. X-ray pulsar-based navigation using time-differenced measurement[J]. Aerospace Science and Technology,2014,36:27-35
[71] LEAN J. Variations in the Sun’s radiative output[J]. Reviews of Geophysics,1991,29(4):505-535
[72] GREC G,FOSSAT E,POMERANTZ M. Solar oscillations:full disk observations from the geographic south pole[J]. Nature,1980,288(5791):541-544
[73] 刘宇飞. 深空自主导航方法研究及在接近小天体中的应用[D]. 哈尔滨:哈尔滨工业大学,2007.
LIU Y F. Study on the deep space autonomous navigation method and its application in approaching the small celestial bodies[D]. Harbin:Harbin Institute of Technology,2007.
[74] 郑伟,王禹淞,姜坤,等. X射线脉冲星导航方法研究综述[J]. 航空学报,2023,44(3):527451
ZHENG W,WANG Y S,JIANG K,et al. overview of X-ray pulsar-based navigation methods[J]. Acta Aeronautica et Astronautica Sinica,2023,44(3):527451
[75] LIU J,MA J,TIAN J,et al. Pulsar navigation for interplanetary missions using CV model and ASUKF[J]. Aerospace Science and Technology,2012,22(1):19-23
[76] LIU J,MA J,TIAN J WEN,et al. X-ray pulsar navigation method for spacecraft with pulsar direction error[J]. Advances in Space Research,2010,46(11):1409-1417
[77] WANG Y,ZHENG W,SUN S,et al. X-ray pulsar-based navigation system with the errors in the planetary ephemerides for Earth-orbiting satellite[J]. Advances in Space Research,2013,51(12):2394-2404
[78] 徐周. GPS 差分定位技术及实现方法的研究[D]. 郑州:解放军信息工程大学,2006.
XU Z. A study of GPS differential positioning technology and realization method[D]. Zhengzhou:Information Engineering University,2006.
[79] LIU J,FANG J C,LIU G. Solar frequency shift–based radial velocity difference measurement for formation flight and its integrated navigation[J]. Journal of Aerospace Engineering,2017,30(5):04017049
[80] 宁晓琳,梁晓钰,吴伟仁,等. 月球探测器天文测角/单程无线电时间差分测距/差分测速导航方法[J]. 航空学报,2021,42(11):129-138
NING X L,LIANG X Y,WU W R,et al. Lunar probe navigation based on celestial angle measurement,one-way radio time-differenced distance and time-differenced velocity measurement[J]. Acta Aeronautica et Astronautica Sinica,2021,42(11):129-138
[81] NING X,GUI M,FANG J,et al. Differential X-ray pulsar aided celestial navigation for Mars exploration[J]. Aerospace Science and Technology,2017,62:36-45
[82] CUI P,WANG S,GAO A,et al. X-ray pulsars/Doppler integrated navigation for Mars final approach[J]. Advances in Space Research,2016,57(9):1889-1900
[83] CHEN X,SUN Z,ZHANG W,et al. A novel autonomous celestial integrated navigation for deep space exploration based on angle and stellar spectra shift velocity measurement[J]. Sensors,2019,19(11):2555
[84] LIU J,NING X LIN,MA X,et al. Direction/distance/velocity measurements deeply integrated navigation for venus capture period[J]. Journal of Navigation,2018,71(4):861-877
[85] HE Z,WANG X,FANG J. An innovative high-precision SINS/CNS deep integrated navigation scheme for the Mars rover[J]. Aerospace Science and Technology,2014,39:559-566
[86] ZHAO Y,WANG X,LI Q,et al. A high-accuracy autonomous navigation scheme for the Mars rover[J]. Acta Astronautica,2019,154:18-32
[87] LU J,LEI C,YANG Y,et al. In-motion initial alignment and positioning with INS/CNS/ODO integrated navigation system for lunar rovers[J]. Advances in Space Research,2017,59(12):3070-3079
[88] 王卫华,谭天乐,贺亮. 基于组合导航的月面起飞自主对准技术[J]. 载人航天,2014,20(4):296-300
WANG W H,TAN T L,HE L. Initial alignment calibration off the lunar surface based on combination navigation[J]. Manned Spaceflight,2014,20(4):296-300
[89] NING X,CHAO W,HUANG Y,et al. Spacecraft autonomous navigation using the Doppler velocity differences of different points on the solar disk[J]. IEEE Transactions on Aerospace and Electronic Systems,2020,56(6):4615-4625
[90] 宁晓琳,黄玉琳,晁雯. 航天器太阳圆面速度差/太阳视方向组合导航[J]. 航空学报,2020,41(9):271-280
NING X L,HUANG Y L,CHAO W. Integrated navigation of solar disk velocity difference and sun direction for spacecraft[J]. Acta Aeronautica et Astronautica Sinica,2020,41(9):271-280
[91] 晁雯. 基于太阳圆面速度差的新型天文导航方法研究[D]. 北京:北京航空航天大学,2019.
CHAO W. Spacecrafts celestial navigation method using the doppler velocity differences of different points on the solar disk[D]. Beijing:Beihang University,2019
[92] EYLES C J,HARRISON R A,DAVIS C J,et al. The heliospheric imagers onboard the STEREO mission[J]. Solar Physics,2009,254(2):387-445
[93] PESNELL W D,THOMPSON B J,CHAMBERLIN P C. The solar dynamics observatory(SDO)[J]. Solar Physics,2012,275(1-2):3-15
[94] FOX N J,VELLI M C,BALE S D,et al. The solar probe plus mission:humanity’s first visit to our star[J]. Space Science Reviews,2016,204(1-4):7-48
[95] BALOGH A,BEEK T J,FORSYTH R J,et al. The magnetic field investigation on the Ulysses mission-instrumentation and preliminary scientific results[J]. Astronomy and Astrophysics Supplement Series,1992,92:221-236
[96] DOMINGO V,FLECK B,POLAND A I. The SOHO mission:an overview[J]. Solar Physics,1995,162(1):1-37
[97] LIU J,FANG J C,LIU G,et al. Solar flare TDOA navigation method using direct and reflected light for Mars exploration[J]. IEEE Transactions on Aerospace and Electronic Systems,2017,53(5):2469-2484
[98] ZHANG W. A study of the navigation technology and application based on astronomical spectral velocity measurement[J]. Navigation and Control,2020,19(5/4):64-73
[99] NING X L,GUI M Z,FANG J C,et al. A novel autonomous celestial navigation nethod using solar oscillation time delay measurement[J]. IEEE Transactions on Aerospace and Electronic Systems,2018,54(3):1392-1403
[100] NING X,GUI M,ZHANG J,et al. Solar oscillation time delay measurement assisted celestial navigation method[J]. Acta Astronautica,2017,134:152-158
[101] GUI M Z,ZHAO D,NING X L,et al. A time delay/star angle integrated navigation method based on the event-triggered implicit unscented kalman filter[J]. IEEE Transactions on Instrumentation and Measurement,2021,70:1-10
[102] GUI M Z,YANG H,NING X L,et al. Variational Bayesian implicit unscented Kalman filter for celestial navigation using time delay measurement[J]. Advances in Space Research,2023,71(1):756-767