Article

Research and Development of Thermal Protection Materials Applied in Deep Space Exploration

Expand
  • Beijing Spacecrafts Manufacturing Factory, Beijing 100094, China

Received date: 05 Oct 2015

Revised date: 14 Jan 2016

Abstract

With deeper exploration in space, environment becomes more harsh, such as high temperature engine plume protection during flying, aerodynamic heating during re-entry, sunshine heating the vehicle during long time flying, the materials used in vehicles failed in high temperature environment in some planets. In this paper, information about advanced thermal protection materials (TPM) in home and aboard was presented, such as TPM used in Shenzhou capsule and a kind of novel light-weight and high- efficient TPM used in Orion, which could serve the future vehicles worked in adverse environment.

Cite this article

ZHANG Pengfei, LIANG Long, TAO Jibai, DONG Wei, GONG Xu, ZHANG Yusheng, LI Yu . Research and Development of Thermal Protection Materials Applied in Deep Space Exploration[J]. Journal of Deep Space Exploration, 2016 , 3(1) : 77 -82 . DOI: 10.15982/j.issn.2095-7777.2016.01.012

References

[1] Thomas Taylor J. Apollo experience report: thermal protection from engine-plume environment[R]. NASA TN D-6844.
[2] Brooks W A, Tompkins S S, Swann R T. Flight and ground tests of Apollo heat-shield material[C]// Conference on Langley Research Related to Apollo Mission, NASA SP-101. [S. l. ]:NASA, 1965.
[3] Andrew G Santo, Robert E Gold. The messenger mission to mercury: spacecraft and mission design[J]. Planetary and Space Science, 2001(49) : 1481-1500.
[4] Fox N J, Bale S D, Decker R B, et al. Solar probe plus: a NASA mission to touch the Sun[C]// American: Agu Fall Meeting Abstracts. [S. l. ]:NASA, 2013.
[5] 陈宇强, 易丹青. 温度对2024铝合金蠕变行为的影响[J]. 中国有色金属学报, 2010(20): 632-638. Chen Y Q, Yi D Q. Effect of temperature on creep behavior of 2024 aluminum alloy[J]. The Chinese Journal of Nonferrous Metals, 2010(20): 632-638.
[6] 焦更生, 李贺军, 李克智, 等. 涂层碳/碳复合材料氧化机理的研究[J]. 功能材料, 2007, 38(8): 1327-1330. Jiao G S, Li H J, Li K Z, et al. Study on the oxidation mechanism of the coated C/C composites[J]. Journal of Functional Materials, 2007, 38(8): 1327-1330.
[7] Fu Q G, Li H J, Shi X H, et al. Double-layer oxidation protective SiC/glass coating for carbon/carbon composite[J]. Surface& Coatings Technology, 2006(200): 3473-3477.
[8] 刘淼. 碳/碳复合材料抗氧化SiC基复合涂层制备及性能研究[D]. 西安: 陕西科技大学, 2009. Liu M. Research on production and mechanism of SiC/C-AIPO4-mullite coating for C/C composites[D]. Xi'an: Shaanxi University of Science & Technology, 2009.
[9] 黄政仁, 谭寿洪, 陈忠明, 等. 碳化硅材料的空间应用--轻量化反射镜[C]//中国空间科学学会空间材料专业委员会学术交流会. [S. l. ]: 中国空间科学学会空间材料专业委员会, 2002. Huang Z R, Tan S H, Chen Z M, et al. Space application of silicon carbide materials--lightweight mirror[C]// Academic Conference of Spatial Materials Professional Committee of China Space Science Society . [S. l. ]: Spatial Materials Professional Committee of China Space Science Society, 2002.
[10] 陈明和, 傅桂龙, 张中元, 等. SiC陶瓷在航天器高温结构件研制中的应用[J]. 南京航空航天大学学报, 2000, 32(2): 132-136. Chen M H, Fu G L, Zhang Z Y, et al. Application of SiC ceramics to manufacture of spacecraft combustion chamber[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2000, 32(2):132-136.
[11] Evans A G, Zok F W. The physics and mechanics of fiber-reinforced brittle matrix composites[J]. J. Mater. Sci. , 1994(29): 3857-3896.
[12] 张伟华, 成来飞, 张立同, 等. C/SiC复合材料表面Si-C-B自愈合涂层的制备与抗氧化行为[J]. 无机材料学报, 2008, 23(4): 774-779. Zhang W H, Cheng L F, Zhang L T, et al. Preparation and anti-oxidation behavior of Si-C-B self-healing coating on C/SiC composite[J]. Journal of Inorganic Materials, 2008, 23(4):774-779.
[13] 张立同, 成来飞, 徐永东, 等. 自愈合碳化硅陶瓷基复合材料研究及应用进展[J]. 航空材料学报, 2006, 26(3): 226-232. Zhang L T, Cheng L F, Xu Y D, et al. Porgess on self-healing silicon carbide ceramic matrix composites and its applications[J]. Journal of Aeronautical Materials, 2006, 26(3):226-232.
[14] Aparicio M, Duran A. Infiltration of C/SiC composites with silica sol-gel solutions: part II. infiltration under isostatic pressure and oxidation resistance [J]. Mater. Res. Soc. , 1999, 14(11): 4239-4245.
[15] Tong C Q, Cheng L F, Yin X W, et al. Oxidation behavior of 2D C/SiC composites modified by SiB4 particles in inter-bundle pore [J]. Compos. Sci. Technol. , 2008, 68(3-4): 602-607.
[16] Yin X W, Cheng L F, Zhang L T, et al. Microstructure and oxidation resistance of carbon/silicon carbide composites infiltrated with chromium silicide [J]. Mater. Sci. Eng. , A, 2000, 290(1-2): 89-94.
[17] 赵忠强. 氧化物气凝胶的制备、结构和性质的研究[D]. 济南: 山东大学, 2008. Zhao Z Q. Preparation, structure and characterization of transition metal oxide aerogels[D]Jinan:Shandong University, 2008.
[18] 张伟娜, 王庆伟, 李云辉, 等. 二氧化硅气凝胶制备影响因素的研究[J]. 吉林师范大学学报: 自然科学版, 2008(1): 67-70. Zhang W N, Wang Q W, Li Y H, et al. Study on the influencing factors of the silica aerogels preparation[J]. Journal of Jilin Normal University(Natural Science Edition), 2008(1):67-70.
[19] 周祥发, 冯坚, 肖汉宁, 等. 二氧化硅气凝胶隔热复合材料的性能及其瞬态传热模拟[J]. 国防科技大学学报, 2009, 31(2): 36-40. Zhou X F, Feng J, Xiao H N, et al. Performance and heat transfer simulation of silica aerogel composites[J]. Journal of National University of Defense Technology, 2009, 31(2):36-40.
[20] 陈亮, 张睿, 龙东辉, 等. 炭-二氧化硅复合气凝胶的合成及结构分析[J]. 无机材料学报, 2009, 24(4): 690-694. Chen L, Zhang R, Long D H, et al. Synthesis and structure of carbon/silica hybrid aerogels[J]. Journal of Inorganic Materials, 2009, 24(4):690-694.
[21] 冯坚, 高庆福, 冯军宗, 等. 纤维增强SiO2气凝胶隔热复合材料的制备及其性能[J]. 国防科技大学学报, 2010, 32(1): 40-44. Feng J, Gao Q F, Feng J Z, et al. Preparation and properties of fiber reinforced SiO2 aerogel insulation composites[J]. Journal of National University of Defense Technology, 2010, 32(1):40-44.
[22] Endo T, Sugiura S, Salarnaki M, et al. Sintering and mechanical properties of β-wollastonite [J]. Journal of Material Science, 1994, 29(6): 1501-1506.
[23] 倪文. 硅钙石型硅酸钙保温材料的特点与发展趋势[J]. 新材料产业, 2002(11):32-35. Ni W. The characteristics and development trend of xonotlite calcium silicate insulation material[J]. Advanced Materials Industry, 2002(11):32-35.
[24] Zeng S Q, Hunt A, Greif R. Theoretical modeling of carbon content to minimize heat transfer in silica aerogel[J]. J Non- CrystSolids, 1995, 186(2):271-277.
[25] Young-Geun Kwon, Se-Youmg Choi. Ambient-fried silica aerogel doped with TiO2 powder for thermal insulation[J]. J Mater Sci, 2000(35):60-75.
[26] 高庆福, 张长瑞, 冯坚, 等. 氧化铝气凝胶复合材料的制备与隔热性能[J]. 国防科技大学学报, 2008, 30(4): 39-42. Gao Q F, Zhang C R, Feng J, et al. Preparation and thermal performance of alumina aerogel insulation composites[J]. Journal of National University of Defense Technology, 2008, 30(4):39-42.
[27] 吴国庭. 神舟飞船防热结构的研制[J]. 航天器工程, 2004, 3(13): 14-19. Wu G T. Development of the Shenzhou spacecraft thermal structure[J]. Spacecraft Engineering, 2004, 3(13): 14-19.
[28] 吴国庭.载人航天器防热结构[M].北京: 国防工业出版社, 2003. Wu G T. Thermal protection structure of manned spacecraft[M]. Beijing:National Defense Industry Press, 2003.
[29] 吴国庭, 陈月根.防热结构设计[M]. 北京: 宇航出版社, 1991. Wu G T, Chen Y G. Thermal protection structure design[M]. Beijing:China Astronautic Publishing House, 1991.
Outlines

/