This paper considers the guidance design for Mars entry vehicles with disturbance modulation, providing a composite strategy based on drag. First, according to dynamic equations of the vehicle and combining with the definition of drag, the drag dynamic equation contained with disturbance is given. Second, in order to make sure the system obtain a better anti-disturbance performance and more quickly track speed, the finite time feedback guidance law is designed based on drag dynamic equation. With the purpose of further improving the anti-disturbance ability, a disturbance observer is designed to estimate unknown disturbance and the estimated value is used for feed-forward compensation, then a composite law is obtained. In the end, a comparison simulation is carried out to examine the efficiency and superiority of this strategy.
YAN Xiaopeng, SUN Haibin, GUO Lei
. Finite Time Anti-Disturbance Guidance Law Design for Mars Entry[J]. Journal of Deep Space Exploration, 2016
, 3(1)
: 61
-67
.
DOI: 10.15982/j.issn.2095-7777.2016.01.010
[1] Tu K Y, Munir M S, Mease K D. Drag-based predictive tracking guidance for Mars precision landing[J]. Journal of Guidance, Control and Dynamics, 2000, 23(4):620-628.
[2] Bharadwaj S. Entry trajectory tracking law via feedback linearization[J]. Journal of Guidance, Control and Dynamics, 1998, 21(5):726-732.
[3] Benito J, Mease K D. Nonlinear predictive controller for drag tracking in entry guidance[C]// Astrodynamics Specialist Conference and Exhibit.Honolulu, Hawaii:[s. n.], 2008.
[4] Restrepo C, Valasek J. Structured adaptive model inversion controller for Mars atmospheric flight[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(4):937-957.
[5] 李世华, 丁世宏, 田玉平. 一类二阶非线性系统的有限时间状态反馈镇定方法[J]. 自动化学报, 2007, 33(1): 101-104.Li S H., Ding S H, Tian Y P. A finite-time state feedback method for second-order nonlinear system[J]. Acta Automatica Sinica, 2007, 33(1):101-104.
[6] Li S H, Ding S H, Li Q. Global set stabilization of the spacecraft attitude using finite-time control technique[J]. International Journal Control, 2009, 82(5): 822-836.
[7] Wang Z, Li S H, Fei S M. Finite-time tracking control of a nonholonomic mobile robot[J]. Asian Journal Control, 2009, 11(3):344-357.
[8] Bhat S P, Bernstein D S. Continuous finite-time stabilization of the translational and rotational double integrators[J]. IEEE Transaction on Automatic Control, 1998, 43(5): 678-682.
[9] Guo L, Chen W H. Disturbance attenuation and rejection for a class of nonlinear systems via DOBC approach[J]. International Journal Robust Nonlinear Control, 2005, 15(3): 109-125.
[10] Chen W H. Disturbance observer based control for nonlinear systems[J]. IEEE/ASME Trans Mechatron, 2004, 9(4):706-710.
[11] Chen W H, Balance D J, Gawthrop P J, et al. A nonlinear disturbance observer for robotic manipulators[J]. IEEE Transactions on Industrial Electronics, 2000, 47(4): 932-938.
[12] Talole S E, Benito J, Mease K D. Sliding mode observer for drag tracking in entry guidance[C]// AIAA Guidance, Navigation and Control Conference and Exhibit.[S. l.]:AIAA, 2007.
[13] Benito J, Mease K D. Mars entry guidance with improved altitude control[C]//AIAA/AAS Astro dynamics Specialist Conference and Exhibit.[S. l.]:AIAA, 2006.
[14] Khalil H K. Nonlinear systems[M]. Prentice-Hall, Third Edition, 2002.
[15] Yang J, Zolotas A, Chen W H, et al. Robust control of nonlinear MAGLEV suspension system with mismatched uncertainties via DOBC approach[J]. ISA Transactions, 2011, 50(3): 389-396.
[16] Yang J, Chen W H, Li S H. Non-linear disturbance observer-based robust control for systems with mismatched disturbances/uncertainties[J]. IET Control Theory and Applications, 2011, 5(18): 2053-2062.