[1] Wu W,Liu W,Qiao D,et al. Investigation on the development of deep space exploration[J]. Science China Technological Sciences,2012,55(4):1086-1091.
[2] 崔平远,徐瑞,朱圣英,等. 深空探测器自主技术发展现状与趋势[J]. 航空学报,2014,35(1):13-28. Cui P Y,Xu R,Zhu S Y,et al. State of the art and development trends of on-board autonomy technology for deep space exploration[J]. Acta Aeronautica et Astronautica Sinica,2014,35(1):13-28.
[3] Kerr R A. Mars exploration hang on! Curiosity is plunging onto Mars[J]. Science Magazine,2012,336(6088):1498-1499.
[4] Yano H,Kubota T,Miyamoto H,et al. Touchdown of the Hayabusa spacecraft at the Muses Sea on Itokawa[J]. Science,2006,312(5778):1350-1353.
[5] Hand E. Planetary science Philae probe makes bumpy touchdown on a comet[J]. Science,2014,346(6212):900-901.
[6] Braun R D,Manning R M. Mars exploration entry,descent and landing challenges[J]. Journal of Spacecraft and Rockets,2007,44(2):310-323.
[7] 崔平远,于正湜,朱圣英. 火星进入段自主导航技术研究现状与展望[J]. 宇航学报,2013,34(4):447-456. Cui P Y,Yu Z S,Zhu S Y. Research progress and prospect of autonomous navigation techniques for Mars entry phase[J]. Journal of Astronautics,2013,34(4):447-456.
[8] 崔平远,乔栋. 小天体附近轨道动力学与控制研究现状与展望[J]. 力学进展,2013,43(5):526-539. Cui P Y,Qiao D. State-of-the-art and prospects for orbital dynamics and control near small celestial bodies[J]. Advances in Mechanics,2013,43(5):526-539.
[9] 崔平远,胡海静,朱圣英. 火星精确着陆制导问题分析与展望[J]. 宇航学报,2014,35(3):245-253. Cui P Y,Hu H J,Zhu S Y. Analysis and prospect of guidance aspects for Mars precision landing[J]. Journal of Astronautics,2014,35(3):245-253.
[10] Sheikh S I,Pines D J,Ray P S. Spacecraft navigation using X-ray pulsars[J]. Journal of Guidance,Control and Dynamics,2006(29):49-63.
[11] Emadzadeh A A,Speyer J L. Navigation in space by X-ray pulsars[M]. New York:Springer,2011.
[12] Winternitz L,Gendreau K C,Hassouneh M A,et al. The role of X-rays in future space navigation and communication[J]. Advances in the Astronautical Sciences,2013(149):537-551.
[13] Cui P,Yu Z,Zhu S,et al. Real-time navigation for Mars final approach using X-ray pulsars[C]//AIAA Guidance,Navigation,and Control Conference. Boston:[s.n.],2013:19-22.
[14] Cui P,Wang S,Gao A,et al. X-ray pulsars/Doppler integrated navigation for Mars final approach[J]. Advances in Space Research,2016,57(9):1889-1900.
[15] Ely T A,Bishop R H,Dubois-Matra O. Robust entry navigation using hierarchical filter architectures regulated with gating networks[C]//16th International Symposium on Spaceflight Dynamics Symposium.Pasadena:[s.n.],2001:3-6.
[16] Lévesque J F,Lafontaine J D. Innovative navigation schemes for state and parameter estimation during Mars entry[J]. Journal of Guidance,Control,and Dynamics,2007,30(1):169-184.
[17] Dubois-Matra O,Bishop R H. Multi-model navigation with gating networks for Mars entry precision landing[C]//AIAA Atmospheric Flight Mechanics Conference. Providence:AIAA,2004:16-19.
[18] Zanetti R,Bishop R H. Adaptive entry navigation using inertial measurements[C]//Proceedings of the 17th Annual Space Flight Mechanics Meeting. Sedona:American Institute of Aeronautics and Astronautics,2007:457-469.
[19] Lightsey E G,Mogensen A,Burkhart P D,et al. Real-time navigation for Mars missions using the Mars network[J]. Journal of Spacecraft and Rockets,2008,45(3):519-533.
[20] Yu Z,Cui P,Zhu S. Observability-based beacon configuration optimization for Mars entry navigation[J]. Journal of Guidance,Control,and Dynamics,2015,38(4):643-650.
[21] Yu Z,Zhu S,Cui P. Orbit optimization of Mars orbiters for entry navigation:from an observability point of view[J]. Acta Astronautica,2015(111):136-145.
[22] Yu Z,Cui P,Zhu S. On the observability of Mars entry navigation using radiometric measurements[J]. Advances in Space Research,2014,54(8):1513-1524.
[23] Ely T A,Heyne M,Riedel J E. Altair navigation during trans-lunar cruise,lunar orbit,descent and landing[C]//AIAA Guidance,Navigation,and Control Confe-rence.Toronto:AIAA,2010.
[24] Xavier S,Sebastien B. LiGNC summary report[R].[S.l]:ESA Technology Report,2005.
[25] Li S,Cui P,Cui H. Vision-aided inertial navigation for pinpoint planetary landing[J]. Aerospace Science and Technology,2007(11):499-506.
[26] Li S,Peng Y,Lu Y,et al. MCAV/IMU integrated navigation for the powered descent phase of Mars EDL[J]. Advances in Space Research,2010,46(5):557-570.
[27] Yu Z,Xu R,Cui P. A multi sensor based integrated navigation for pin-point landing on Mars[C]//AIAA Guidance,Navigation,and Control Conference. Kissimmee:AIAA,2015:5-9.
[28] Qin T,Zhu S,and Cui P. An innovative navigation scheme of powered descent phase for Mars pinpoint landing[J]. Advances in Space Research,2014,54(9):1888-1900.
[29] Johnson A E,Yang C,Matthies L H. Machine vision for autonomous small body navigation[C]//IEEE Aerospace Conference. Big Sky:IEEE,2000:18-25.
[30] 邵巍,常晓华,崔平远,等. 惯导融合特征匹配的小天体着陆导航算法[J]. 宇航学报,2010,31(7):1748-1755. Shao W,Chang X H,Cui P Y,et al. Coupled feature matching and INS for small body landing navigation[J]. Journal of Astronautics,2010,31(7):1748-1755.
[31] 田阳,崔平远,崔祜涛. 基于图像序列的软着陆小天体自主导航方法[J]. 宇航学报,2009,30(1):210-214. Tian Y,Cui P Y,Cui H T. Autonomous navigation method for soft landing on small body based on image sequence[J]. Journal of Astronautics,2009,30(1):210-214.
[32] 朱圣英,崔平远,崔祜涛,等. 基于路标观测角的星际着陆器自主位姿确定技术[J]. 航空学报,2010,31(2):318-326. Zhu S Y,Cui P Y,Cui H T,et al. Autonomous position and attitude determination for interplanetary landers based on landmark observation angles[J]. Acta Aeronautica et Astronautica Sinica,2010,31(2):318-326.
[33] Vinh N X. Optimal Trajectories in Atmospheric Flight[M]. New York:Elsevier Scientific Software,1981.
[34] Istratie V. Optimal skip entry with heat constraints into atmosphere[C]//International Conference of Numerical Analysis and Applied Mathematics. Corfu:[s.n.],2007:16-20.
[35] 雍恩米,陈磊,唐国金. 飞行器轨迹优化数值方法综述[J]. 宇航学报,2008,29(2):397-406. Yong E M,Chen L,Tang G J. A survey of numerical methods for trajectory optimization of spacecraft[J]. Journal of Astronautics,2008,29(2):397-406.
[36] Fahroo F,Ross I M. Costate estimation by a Legendre pseudospectral method[J]. Journal of Guidance,Control,and Dynamics,2001,24(2):270-277.
[37] Benson D A. A Gauss pseudospectral transcription for optimal control[D]. Cambridge:Massachusetts Institute of Technology,2005.
[38] Tawfiqur R,Zhou H,Sheng Y,et al. Trajectory optimization of hypersonic vehicle using Gauss pseudospectral method[J]. Applied Mechanics and Materials,2012,110(1):5232-5239.
[39] 任高峰,崔平远,崔祜涛,等. 一种新型火星定点着陆轨迹快速优化方法[J]. 宇航学报,2013,34(4):464-472. Ren G F,Cui P Y,Cui H T,et al. A new method of rapid trajectory optimization for Mars pin-point landing[J]. Journal of Astronautics,2013,34(4):464-472.
[40] Long J,Gao A,Cui P. Controllable set analysis for planetary landing under model uncertainties[J]. Advances in Space Research,2015,56(2):281-292.
[41] Lantoine G,Braun R. Optimal trajectories for soft landing on asteroids[R]. USA:Georgia Insti-tute of Technology,2006.
[42] Arora R K. Reentry trajectory optimization:evolutionary approach[C]//The 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. Atlanta:AIAA,2002:4-6.
[43] Lafleur J M. Cerimele C J. Mars entry bank profile design for terminal state optimization[J]. Journal of Spacecraft and Rockets,2011,48(6):1012-1024.
[44] Yu Z,Cui P,Gao A. A novel trajectory optimization method for Mars atmospheric entry[C]//66rd International Astronautical Congress. Jerusalem:[s.n.],2015:12-16.
[45] Rahimi A,Kumar K D,Alighanbari H. Particle swarm optimization applied to spacecraft reentry trajectory[J]. Journal of Guidance,Control,and Dynamics,2013,36(1):307-310.
[46] Yu Z,Zhao Z,Cui P. An observability-based trajectory optimization considering disturbance for atmospheric entry[C]//AIAA Guidance,Navigation,and Control Conference. San Diego:AIAA,2016:4-8.
[47] Hu H J,Zhu S Y,Cui P Y. Desensitized optimal trajectory for landing on small bodies with reduced landing error[J]. Aerospace Science and Technology,2016,48:178-185.
[48] Evensen G. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics[J]. Journal of Geophysical Researc,1994(99):10143-10162.
[49] Whitaker J S,Hamill T M. Ensemble data assimilation without perturbed observations[J]. Monthly Weather Review,2002(130):1913-1924.
[50] Gordon N J,Salmond D J,Smith A F M. Novel approach to non-linear and non-Gaussian Bayesian state estimation[J]. Proceedings of Radar and Signal Processing,1993,140(2):107-113.
[51] Arulampalam M,Maskell S,Gordon N,et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J]. IEEE Transactions on Signal Processing,2002(50):174-188.
[52] Julier S J,Uhlmann J K,Durrant-Whyte H F. A new approach for filtering nonlinear system. Proceedings of the American Control Conference[C]//San Diego,CA:Institute of Electrical and Electronics Engineers,1999:1628-1632.
[53] Heyne M C. Spacecraft precision entry navigation using an adaptive sigma point Kalman filter bank[D]. Austin TX:The University of Texas at Austin,2007.
[54] Pence B,Fathy H,Stein J. A maximum likelihood approach to recursive polynomial chaos parameter estimation[C]//Proceedings of the American Control Conference. Baltimore:Institute of Electrical and Electronics Engineers,2010,2144-2151.
[55] Li J,Xiu D,A generalized polynomial chaos based ensemble Kalman filter with high accuracy[J]. Journal of Computational Physics,2009,228(15):5454-5469.
[56] Yu Z,Cui P,Ni M. A polynomial chaos based square-root Kalman filter for Mars entry navigation[J]. Aerospace Science and Technology,2016(51):192-202.
[57] Wang L,Xia Y. Mars entry navigation with uncertain parameters based on desensitized extended Kalman filter[J]. IEEE Transactions on Industrial Informatics,2015,11(5):998-1005.
[58] Lou T,Zhao L. Robust Mars atmospheric entry integrated navigation based on parameter sensitivity[J]. Acta Astronautica,2015(119):60-70.
[59] Bharadwaj S,Rao A V,Mease K D. Entry trajectory tacking law via feedback linearization[J]. Journal of Guidance,Control,and Dynamics,1998,21(5):726-732.
[60] Saraf A,Leavitt J A,Chen D T,et al. Design and evolution of an acceleration guidance algorithm for entry[J]. Journal of Guidance,Control,and Dynamics,2004,41(6):986-995.
[61] Lu P. Regulation about time-varying trajectories:precision entry guidance illustrated[J]. Journal of Guidance,Control,and Dynamics,1999,22(6):784-790.
[62] Cho N,Kim Y. Three-dimensional nonlinear differential geometric path-following guidance law[J]. Journal of Guidance,Control,and Dynamics,2015,38(12):2366-2385.
[63] Xia Y,Chen R,Pu F,et al. Active disturbance rejection control for drag tracking in Mars entry guidance[J]. Advances in Space Research,2014(53):853-861
[64] Powell R W. Numerical roll reversal predictor corrector aerocapture and precision landing guidance algorithm for the Mars Surveyor program 2001 missions[R].[S.l.]:AIAA,1998.
[65] Joshi A,Sivan K. Predictor-corrector reentry guidance algorithm with path constraints for atmospheric entry vehicles[J]. Journal of Guidance Control and Dynamics,2007,30(5):1307-1318.
[66] Brunner C W,Lu P. Skip entry trajectory planning and guidance[J]. Journal of Guidance,Control,and Dynamics,2008,31(5):1210-1219.
[67] 夏元清,沈刚辉,孙浩然,等. 火星探测器进入段预测校正制导方法[J]. 深空探测学报,2015,2(4):338-344. Xia Y Q,Shen G H,Sun H R,et al. Mars entry guidance based on predicted corrector algorithm[J]. Journal of Deep Space Exploration,2015,2(4):338-344.
[68] Kubota T,Otsuki M,Hashimoto T,et al. Touchdown dynamics for sampling in Hayabusa mission[C]//Proceedings of the AIAA/AAS Astrodynamics Specialist Conference and Exhibit. Keystone:AIAA,2006:2006-6539.
[69] Berry K,Sutter B,May A,et al. Osiris-REx touch-and-go(TAG)mission design and analysis[C]//36th Annual AAS Guidance and Control Conference. Breckenridg:AAS,2013:13-95.
[70] Ulamec S,Kucherenko V,Biele J,et al. Hopper concepts for small body landers[J]. Advances in Space Research,2011,47(3):428-439.
[71] Sagdeev R Z,Zakharov A V. Brief history of the Phobos mission[J]. Nature,1989,341(6243):581-585.
[72] Yoshimitsu T,Kubota T,Nakatani I,et al. Micro-hopping robot for asteroid exploration[J]. Acta Astronautica,2003,52(2):441-446.
[73] Dietze C,Herrmann F,Kuß S,et al. Landing and mobility concept for the small asteroid lander MASCOT on asteroid 1999 JU3[C]//International Astronautical Congress. Iac Prague:[s.n.],2010.
[74] Pavone M,Castillo-Rogez J C,Nesnas I A D,et al. Spacecraft/rover hybrids for the exploration of small solar system bodies[C]//IEEE Aerospace Conference. Big Sky:IEEE,2013:2-9.
[75] Bellerose J,Scheeres D J. Dynamics and control for surface exploration of small bodies[C]//AIAA/AAS 2008 Astrodynamics Specialist Conference. Honolulu:AIAA,2008:2008-6251.
[76] Bellerose J,Girard A,Scheeres D J. Dynamics and control of surface exploration robots on asteroids[J]. Lecture Notes in Control and Information Sciences,2009(381):135-150.
[77] Mège D,Gurgurewicz J,Grygorczuk J,et al. The highland terrain hopper(hopter):concept and use cases of a new locomotion system for the exploration of low gravity solar system bodies[J]. Acta Astronautica,2016(121):200-220.