Research Status and Developing Trend of the Autonomous Navigation, Guidance, and Control for Planetary Landing

Expand
  • 1. Institute of Deep Space Exploration, Beijing Institute of Technology, Beijing 100081, China;
    2. Key Laboratory of Autonomous Navigation and Control for Deep Space Exploration, Ministry of Industry and Information Technology, Beijing 100081, China;
    3. Key Laboratory of Dynamics and Control of Flight Vehicle, Ministry of Education, Beijing 100081, China

Abstract

Autonomous navigation,guidance,and control is one of the key technologies for planetary landing,which has a direct impact on mission success. In this paper,the necessity and importance of the further research on the autonomous navigation,guidance,and control are elaborated focusing on the developing demand for the Mars and small body landing mission in the future. Based on the environment features,the challenges encountered for the autonomous navigation,guidance,and control are analyzed. Then and the key techniques involved are discussed,and the state-of-the-art techniques and research tendency of the autonomous navigation for planetary landing are summarized. Finally,the development trends of the autonomous navigation,guidance,and control for Chinese planetary landing mission in the future are previewed.

Cite this article

YU Zhengshi, CUI Pingyuan . Research Status and Developing Trend of the Autonomous Navigation, Guidance, and Control for Planetary Landing[J]. Journal of Deep Space Exploration, 2016 , 3(4) : 345 -355 . DOI: 10.15982/j.issn.2095-7777.2016.04.006

References

[1] Wu W,Liu W,Qiao D,et al. Investigation on the development of deep space exploration[J]. Science China Technological Sciences,2012,55(4):1086-1091.
[2] 崔平远,徐瑞,朱圣英,等. 深空探测器自主技术发展现状与趋势[J]. 航空学报,2014,35(1):13-28. Cui P Y,Xu R,Zhu S Y,et al. State of the art and development trends of on-board autonomy technology for deep space exploration[J]. Acta Aeronautica et Astronautica Sinica,2014,35(1):13-28.
[3] Kerr R A. Mars exploration hang on! Curiosity is plunging onto Mars[J]. Science Magazine,2012,336(6088):1498-1499.
[4] Yano H,Kubota T,Miyamoto H,et al. Touchdown of the Hayabusa spacecraft at the Muses Sea on Itokawa[J]. Science,2006,312(5778):1350-1353.
[5] Hand E. Planetary science Philae probe makes bumpy touchdown on a comet[J]. Science,2014,346(6212):900-901.
[6] Braun R D,Manning R M. Mars exploration entry,descent and landing challenges[J]. Journal of Spacecraft and Rockets,2007,44(2):310-323.
[7] 崔平远,于正湜,朱圣英. 火星进入段自主导航技术研究现状与展望[J]. 宇航学报,2013,34(4):447-456. Cui P Y,Yu Z S,Zhu S Y. Research progress and prospect of autonomous navigation techniques for Mars entry phase[J]. Journal of Astronautics,2013,34(4):447-456.
[8] 崔平远,乔栋. 小天体附近轨道动力学与控制研究现状与展望[J]. 力学进展,2013,43(5):526-539. Cui P Y,Qiao D. State-of-the-art and prospects for orbital dynamics and control near small celestial bodies[J]. Advances in Mechanics,2013,43(5):526-539.
[9] 崔平远,胡海静,朱圣英. 火星精确着陆制导问题分析与展望[J]. 宇航学报,2014,35(3):245-253. Cui P Y,Hu H J,Zhu S Y. Analysis and prospect of guidance aspects for Mars precision landing[J]. Journal of Astronautics,2014,35(3):245-253.
[10] Sheikh S I,Pines D J,Ray P S. Spacecraft navigation using X-ray pulsars[J]. Journal of Guidance,Control and Dynamics,2006(29):49-63.
[11] Emadzadeh A A,Speyer J L. Navigation in space by X-ray pulsars[M]. New York:Springer,2011.
[12] Winternitz L,Gendreau K C,Hassouneh M A,et al. The role of X-rays in future space navigation and communication[J]. Advances in the Astronautical Sciences,2013(149):537-551.
[13] Cui P,Yu Z,Zhu S,et al. Real-time navigation for Mars final approach using X-ray pulsars[C]//AIAA Guidance,Navigation,and Control Conference. Boston:[s.n.],2013:19-22.
[14] Cui P,Wang S,Gao A,et al. X-ray pulsars/Doppler integrated navigation for Mars final approach[J]. Advances in Space Research,2016,57(9):1889-1900.
[15] Ely T A,Bishop R H,Dubois-Matra O. Robust entry navigation using hierarchical filter architectures regulated with gating networks[C]//16th International Symposium on Spaceflight Dynamics Symposium.Pasadena:[s.n.],2001:3-6.
[16] Lévesque J F,Lafontaine J D. Innovative navigation schemes for state and parameter estimation during Mars entry[J]. Journal of Guidance,Control,and Dynamics,2007,30(1):169-184.
[17] Dubois-Matra O,Bishop R H. Multi-model navigation with gating networks for Mars entry precision landing[C]//AIAA Atmospheric Flight Mechanics Conference. Providence:AIAA,2004:16-19.
[18] Zanetti R,Bishop R H. Adaptive entry navigation using inertial measurements[C]//Proceedings of the 17th Annual Space Flight Mechanics Meeting. Sedona:American Institute of Aeronautics and Astronautics,2007:457-469.
[19] Lightsey E G,Mogensen A,Burkhart P D,et al. Real-time navigation for Mars missions using the Mars network[J]. Journal of Spacecraft and Rockets,2008,45(3):519-533.
[20] Yu Z,Cui P,Zhu S. Observability-based beacon configuration optimization for Mars entry navigation[J]. Journal of Guidance,Control,and Dynamics,2015,38(4):643-650.
[21] Yu Z,Zhu S,Cui P. Orbit optimization of Mars orbiters for entry navigation:from an observability point of view[J]. Acta Astronautica,2015(111):136-145.
[22] Yu Z,Cui P,Zhu S. On the observability of Mars entry navigation using radiometric measurements[J]. Advances in Space Research,2014,54(8):1513-1524.
[23] Ely T A,Heyne M,Riedel J E. Altair navigation during trans-lunar cruise,lunar orbit,descent and landing[C]//AIAA Guidance,Navigation,and Control Confe-rence.Toronto:AIAA,2010.
[24] Xavier S,Sebastien B. LiGNC summary report[R].[S.l]:ESA Technology Report,2005.
[25] Li S,Cui P,Cui H. Vision-aided inertial navigation for pinpoint planetary landing[J]. Aerospace Science and Technology,2007(11):499-506.
[26] Li S,Peng Y,Lu Y,et al. MCAV/IMU integrated navigation for the powered descent phase of Mars EDL[J]. Advances in Space Research,2010,46(5):557-570.
[27] Yu Z,Xu R,Cui P. A multi sensor based integrated navigation for pin-point landing on Mars[C]//AIAA Guidance,Navigation,and Control Conference. Kissimmee:AIAA,2015:5-9.
[28] Qin T,Zhu S,and Cui P. An innovative navigation scheme of powered descent phase for Mars pinpoint landing[J]. Advances in Space Research,2014,54(9):1888-1900.
[29] Johnson A E,Yang C,Matthies L H. Machine vision for autonomous small body navigation[C]//IEEE Aerospace Conference. Big Sky:IEEE,2000:18-25.
[30] 邵巍,常晓华,崔平远,等. 惯导融合特征匹配的小天体着陆导航算法[J]. 宇航学报,2010,31(7):1748-1755. Shao W,Chang X H,Cui P Y,et al. Coupled feature matching and INS for small body landing navigation[J]. Journal of Astronautics,2010,31(7):1748-1755.
[31] 田阳,崔平远,崔祜涛. 基于图像序列的软着陆小天体自主导航方法[J]. 宇航学报,2009,30(1):210-214. Tian Y,Cui P Y,Cui H T. Autonomous navigation method for soft landing on small body based on image sequence[J]. Journal of Astronautics,2009,30(1):210-214.
[32] 朱圣英,崔平远,崔祜涛,等. 基于路标观测角的星际着陆器自主位姿确定技术[J]. 航空学报,2010,31(2):318-326. Zhu S Y,Cui P Y,Cui H T,et al. Autonomous position and attitude determination for interplanetary landers based on landmark observation angles[J]. Acta Aeronautica et Astronautica Sinica,2010,31(2):318-326.
[33] Vinh N X. Optimal Trajectories in Atmospheric Flight[M]. New York:Elsevier Scientific Software,1981.
[34] Istratie V. Optimal skip entry with heat constraints into atmosphere[C]//International Conference of Numerical Analysis and Applied Mathematics. Corfu:[s.n.],2007:16-20.
[35] 雍恩米,陈磊,唐国金. 飞行器轨迹优化数值方法综述[J]. 宇航学报,2008,29(2):397-406. Yong E M,Chen L,Tang G J. A survey of numerical methods for trajectory optimization of spacecraft[J]. Journal of Astronautics,2008,29(2):397-406.
[36] Fahroo F,Ross I M. Costate estimation by a Legendre pseudospectral method[J]. Journal of Guidance,Control,and Dynamics,2001,24(2):270-277.
[37] Benson D A. A Gauss pseudospectral transcription for optimal control[D]. Cambridge:Massachusetts Institute of Technology,2005.
[38] Tawfiqur R,Zhou H,Sheng Y,et al. Trajectory optimization of hypersonic vehicle using Gauss pseudospectral method[J]. Applied Mechanics and Materials,2012,110(1):5232-5239.
[39] 任高峰,崔平远,崔祜涛,等. 一种新型火星定点着陆轨迹快速优化方法[J]. 宇航学报,2013,34(4):464-472. Ren G F,Cui P Y,Cui H T,et al. A new method of rapid trajectory optimization for Mars pin-point landing[J]. Journal of Astronautics,2013,34(4):464-472.
[40] Long J,Gao A,Cui P. Controllable set analysis for planetary landing under model uncertainties[J]. Advances in Space Research,2015,56(2):281-292.
[41] Lantoine G,Braun R. Optimal trajectories for soft landing on asteroids[R]. USA:Georgia Insti-tute of Technology,2006.
[42] Arora R K. Reentry trajectory optimization:evolutionary approach[C]//The 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. Atlanta:AIAA,2002:4-6.
[43] Lafleur J M. Cerimele C J. Mars entry bank profile design for terminal state optimization[J]. Journal of Spacecraft and Rockets,2011,48(6):1012-1024.
[44] Yu Z,Cui P,Gao A. A novel trajectory optimization method for Mars atmospheric entry[C]//66rd International Astronautical Congress. Jerusalem:[s.n.],2015:12-16.
[45] Rahimi A,Kumar K D,Alighanbari H. Particle swarm optimization applied to spacecraft reentry trajectory[J]. Journal of Guidance,Control,and Dynamics,2013,36(1):307-310.
[46] Yu Z,Zhao Z,Cui P. An observability-based trajectory optimization considering disturbance for atmospheric entry[C]//AIAA Guidance,Navigation,and Control Conference. San Diego:AIAA,2016:4-8.
[47] Hu H J,Zhu S Y,Cui P Y. Desensitized optimal trajectory for landing on small bodies with reduced landing error[J]. Aerospace Science and Technology,2016,48:178-185.
[48] Evensen G. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics[J]. Journal of Geophysical Researc,1994(99):10143-10162.
[49] Whitaker J S,Hamill T M. Ensemble data assimilation without perturbed observations[J]. Monthly Weather Review,2002(130):1913-1924.
[50] Gordon N J,Salmond D J,Smith A F M. Novel approach to non-linear and non-Gaussian Bayesian state estimation[J]. Proceedings of Radar and Signal Processing,1993,140(2):107-113.
[51] Arulampalam M,Maskell S,Gordon N,et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J]. IEEE Transactions on Signal Processing,2002(50):174-188.
[52] Julier S J,Uhlmann J K,Durrant-Whyte H F. A new approach for filtering nonlinear system. Proceedings of the American Control Conference[C]//San Diego,CA:Institute of Electrical and Electronics Engineers,1999:1628-1632.
[53] Heyne M C. Spacecraft precision entry navigation using an adaptive sigma point Kalman filter bank[D]. Austin TX:The University of Texas at Austin,2007.
[54] Pence B,Fathy H,Stein J. A maximum likelihood approach to recursive polynomial chaos parameter estimation[C]//Proceedings of the American Control Conference. Baltimore:Institute of Electrical and Electronics Engineers,2010,2144-2151.
[55] Li J,Xiu D,A generalized polynomial chaos based ensemble Kalman filter with high accuracy[J]. Journal of Computational Physics,2009,228(15):5454-5469.
[56] Yu Z,Cui P,Ni M. A polynomial chaos based square-root Kalman filter for Mars entry navigation[J]. Aerospace Science and Technology,2016(51):192-202.
[57] Wang L,Xia Y. Mars entry navigation with uncertain parameters based on desensitized extended Kalman filter[J]. IEEE Transactions on Industrial Informatics,2015,11(5):998-1005.
[58] Lou T,Zhao L. Robust Mars atmospheric entry integrated navigation based on parameter sensitivity[J]. Acta Astronautica,2015(119):60-70.
[59] Bharadwaj S,Rao A V,Mease K D. Entry trajectory tacking law via feedback linearization[J]. Journal of Guidance,Control,and Dynamics,1998,21(5):726-732.
[60] Saraf A,Leavitt J A,Chen D T,et al. Design and evolution of an acceleration guidance algorithm for entry[J]. Journal of Guidance,Control,and Dynamics,2004,41(6):986-995.
[61] Lu P. Regulation about time-varying trajectories:precision entry guidance illustrated[J]. Journal of Guidance,Control,and Dynamics,1999,22(6):784-790.
[62] Cho N,Kim Y. Three-dimensional nonlinear differential geometric path-following guidance law[J]. Journal of Guidance,Control,and Dynamics,2015,38(12):2366-2385.
[63] Xia Y,Chen R,Pu F,et al. Active disturbance rejection control for drag tracking in Mars entry guidance[J]. Advances in Space Research,2014(53):853-861
[64] Powell R W. Numerical roll reversal predictor corrector aerocapture and precision landing guidance algorithm for the Mars Surveyor program 2001 missions[R].[S.l.]:AIAA,1998.
[65] Joshi A,Sivan K. Predictor-corrector reentry guidance algorithm with path constraints for atmospheric entry vehicles[J]. Journal of Guidance Control and Dynamics,2007,30(5):1307-1318.
[66] Brunner C W,Lu P. Skip entry trajectory planning and guidance[J]. Journal of Guidance,Control,and Dynamics,2008,31(5):1210-1219.
[67] 夏元清,沈刚辉,孙浩然,等. 火星探测器进入段预测校正制导方法[J]. 深空探测学报,2015,2(4):338-344. Xia Y Q,Shen G H,Sun H R,et al. Mars entry guidance based on predicted corrector algorithm[J]. Journal of Deep Space Exploration,2015,2(4):338-344.
[68] Kubota T,Otsuki M,Hashimoto T,et al. Touchdown dynamics for sampling in Hayabusa mission[C]//Proceedings of the AIAA/AAS Astrodynamics Specialist Conference and Exhibit. Keystone:AIAA,2006:2006-6539.
[69] Berry K,Sutter B,May A,et al. Osiris-REx touch-and-go(TAG)mission design and analysis[C]//36th Annual AAS Guidance and Control Conference. Breckenridg:AAS,2013:13-95.
[70] Ulamec S,Kucherenko V,Biele J,et al. Hopper concepts for small body landers[J]. Advances in Space Research,2011,47(3):428-439.
[71] Sagdeev R Z,Zakharov A V. Brief history of the Phobos mission[J]. Nature,1989,341(6243):581-585.
[72] Yoshimitsu T,Kubota T,Nakatani I,et al. Micro-hopping robot for asteroid exploration[J]. Acta Astronautica,2003,52(2):441-446.
[73] Dietze C,Herrmann F,Kuß S,et al. Landing and mobility concept for the small asteroid lander MASCOT on asteroid 1999 JU3[C]//International Astronautical Congress. Iac Prague:[s.n.],2010.
[74] Pavone M,Castillo-Rogez J C,Nesnas I A D,et al. Spacecraft/rover hybrids for the exploration of small solar system bodies[C]//IEEE Aerospace Conference. Big Sky:IEEE,2013:2-9.
[75] Bellerose J,Scheeres D J. Dynamics and control for surface exploration of small bodies[C]//AIAA/AAS 2008 Astrodynamics Specialist Conference. Honolulu:AIAA,2008:2008-6251.
[76] Bellerose J,Girard A,Scheeres D J. Dynamics and control of surface exploration robots on asteroids[J]. Lecture Notes in Control and Information Sciences,2009(381):135-150.
[77] Mège D,Gurgurewicz J,Grygorczuk J,et al. The highland terrain hopper(hopter):concept and use cases of a new locomotion system for the exploration of low gravity solar system bodies[J]. Acta Astronautica,2016(121):200-220.
Outlines

/