Scientific Objectives and Payload Configuration of China’s First Mars Exploration Mission

Expand
  • 1. Key Laboratory of Lunar and Deep Space Exploration,Chinese Academy of Sciences,Beijing 100101,China;
    2. National Astronomical Observatories,Chinese Academy of Sciences,Beijing 100101,China;
    3. Beihang University School of Astronautics,Beijing 100191,China;
    4. University of Science and Technology of China,School of Earth and Space Science,Hefei 230026,China;
    5. Institute of Electronics,Chinese Academy of Sciences,Beijing 100190,China;
    6. Xi’an Institute of Optics and Precision Mechanics,Chinese Academy of Sciences,Xi’an 710119,China;
    7. Shanghai Institute of Technical Physics,Chinese Academy of Sciences,Shanghai 200083,China;
    8. Institute of Geology and Geophysics,Chinese Academy of Sciences,Beijing 100029,China;
    9. Lunar Exploration and Space Program Center, Beijing 100190, China

Received date: 09 Mar 2018

Revised date: 21 Mar 2018

Abstract

China’s first Mars exploration mission will be implemented in 2020. Scientific objectives and payload configurations are one of the most important top-level designs for the mission. The main scientific objectives of the Mars exploration abroad are briefly reviewed. The scientific objectives and payload configurations of the first Chinese Mars exploration mission are introduced,and the innovation and characteristics of the scientific objectives are analyzed.

Cite this article

LI Chunlai, LIU Jianjun, GENG Yan, CAO Jinbin, ZHANG Tielong, FANG Guangyou, YANG Jianfeng, SHU Rong, ZOU Yongliao, LIN Yangting, OUYANG Ziyuan . Scientific Objectives and Payload Configuration of China’s First Mars Exploration Mission[J]. Journal of Deep Space Exploration, 2018 , 5(5) : 406 -413 . DOI: 10.15982/j.issn.2095-7777.2018.05.002

References

[1] 欧阳自远,邹永廖. 火星科学概论[M]. 上海:上海科技教育出版社,2015.
[2] 吴伟仁,于登云. 深空探测发展与未来关键技术[J]. 深空探测学报,2014,1(1):1-17
WU W R,YU D Y. Development of deep space exploration and its future key technology[J]. Journal of Deep Space Exploration,2014,1(1):1-17
[3] 于登云,孙泽洲,孟林智,等. 火星探测发展历程与未来展望[J]. 深空探测学报,2016,3(2):108-113
YU D Y,SUN Z Z,MENG L Z,et al. The development process and prospects for Mars exploration[J]. Journal of Deep Space Exploration,2016,3(2):108-113
[4] ESA Space Exploration Strategy[Z]. Europe: ESA, 2015.
[5] NASA’s Journey to Mars Pioneering next steps in space exploration[Z]. USA:NASA,2015.
[6] 朱仁璋,王鸿芳,泉浩芳,等. 美国火星表面探测使命述评(上)[J]. 航天器工程,2010,19(2):17-33
ZHU R Z,WANG H F,QUAN H F,et al. Overview of the US Mars surface missions(Part One)[J]. Spacecraft Engineering,2010,19(2):17-33
[7] 朱仁璋,王鸿芳,泉浩芳,等. 美国火星表面探测使命述评(下)[J]. 航天器工程,2010,19(3):7-27
ZHU R Z,WANG H F,QUAN H F,et al. Overview of the US Mars surface missions(Part Two)[J]. Spacecraft Engineering,2010,19(3):7-27
[8] 吴季,朱光武,赵华,等. 萤火一号火星探测计划的科学目标[J]. 空间科学学报,2009,29(5):449-455
WU J,ZHU G W,ZHAO H,et al. Overview of scientific objectives of Chian-Russia Joint Mars exploration program YH-1[J]. Chin. J. Space Sci,2009,29(5):449-455
[9] KIEFFER H H,JAKOSKY B M,SNYDER C W,et al. Mars. tucson[M]. USA:The University of Arizona Press,1992.
[10] 欧阳自远,肖福根. 火星探测的主要科学问题[J]. 航天器环境工程,2011,28(3):205-217
OUYANG Z Y,XIAO F G. Major scientific issues involved in Mars exploration[J]. Spacecraft Environment Engineering,2011,28(3):205-217
[11] 欧阳自远,刘茜. 再造一个地球[M]. 北京:北京理工大学出版社,2009.
[12] BARLOW N. Mars:an introduction to its interior,surface and atmosphere[M]. New York:Cambridge University Press,2014.
[13] 肖媛,苏彦,戴舜,等. 雷达对火星次表层的探测与研究现状[J]. 天文研究与技术,2017,14(2):192-211
XIAO Y,SU Y,DAI S,et al. Overview of the Martian subsurface exploration and research using radar[J]. Astronomical Research & Technology,2017,14(2):192-211
[14] 张洪波. 火星环绕器次表层探测雷达发展综述[J]. 探测与控制学报,2016,38(6):57-61+67
ZHANG H B. Development review on the Mars orbiter subsurface sounding radar[J]. Journal of Detection & Control,2016,38(6):57-61+67
[15] GENDRIN A,MANGOLD N,BIBRING J P,et al. Sulfate in Martian layered terrains:the OMEGA/Mars express view[J]. Science,2005,307(5717):1587-1591
[16] BIBRING J P,LANGEVIN Y,GENDRIN A,et al. Mars surface diversity as revealed by the OMEGA/Mars Express observations[J]. Science,2005,307(5715):1576-1581
[17] CARR M H. The surface of Mars[M]. New Haven:Yale University Press,1981.
[18] SMITH D E,ZUBER M T,SOLOMON S C,et al. The global topography of Mars and implications for surface evolution[J]. Science,1999,284:1495-1503
[19] 史建魁,刘振兴,程征伟. 火星探测研究结果分析[J]. 科技导报,2011,29(10):64-70
SHI J K,LIU Z X,CHENG Z W. An analysis of results of the Mars exploration[J]. Science & Technology Review,2011,29(10):64-70
[20] 周斌,赵华,王劲东,等. 火星空间环境磁场探测研究——高精度磁强计[J]. 空间科学学报,2009,29(5):467-474
ZHOU B,ZHAO H,WANG J D,et al. Martian space environment magnetic field investigation:high accuracy magnetometer[J]. Chin. J. Space Sci,2009,29(5):467-474
[21] 芶盛,岳宗玉,邸凯昌,等. 火星表面含水矿物探测进展[J]. 遥感学报,2017,21(4):531-548
GOU S,YUE Z Y,DI K C,et al. Advances in aqueous minerals detection on Martian surface[J]. Journal of Remote Sensing,2017,21(4):531-548
[22] SMITH P H,BELL J F,BRIDGES N T,et al. Results from the Mars Pathfinder camera[J]. Science,1997,278:1758-1765
[23] SAUNDERS R S,ARVIDSON R E,BADHWAR G D,et al. 2001 Mars Odyssey mission summary[J]. Space Science Reviews,2004,110:1-36
[24] SMITH P H,TAMPPARI L K,ARVIDSON R E,et al. H2O at the Phoenix landing site[J]. Science,2009,325:58-61
[25] RENNO N O,BOS B J,CATLING D C,et al. Possible physical and thermodynamical evidence for liquid water at the Phoenix landing site[J]. Journal of Geophysical Research,2009,114:E00E03
[26] WEBSTER C R,MAHAFFY P R,ATREYA S K,et al. Mars methane detection and variability at Gale crater[J]. Science,2015,347:415-417
[27] JAKOSKY B M,LIN R P,GREBOWSKY J M,et al. The Mars atmosphere and volatile evolution(MAVEN)mission[J]. Space Science Reviews,2015,195:3-48
[28] CASSI C. EXOMars 2016 mission:an overview of the phase C activities progress [C]//The 64th International Astronautical Congress. Beijing:IAC,2013.
Outlines

/