[1] 叶培建, 邹乐洋, 王大轶, 等. 中国深空探测领域发展及展望[J]. 国际太空, 2018, 478(10):6-12. YE P J, ZOU L Y, WANG D Y, et al. Development and prospect of Chinese deep space exploration[J]. Space International, 2018, 478(10):6-12.
[2] 王大轶, 孟林智, 叶培建, 等. 深空探测器的自主运行技术研究[J]. 航天器工程, 2018, 27(6):1-10. WANG D Y, MENG L Z, YE P J, et al. Research of autonomous operation technology for deep space probe[J]. Spacecraft Engineering, 2018, 27(6):1-10.
[3] 孙泽洲. 深空探测技术[M]. 北京:北京理工大学出版社, 2018. SUN Z Z. The technology of deep space exploration[M]. Beijing:Beijing Institute of Technology Press, 2018.
[4] 孟林智, 董捷, 许映乔, 等. 无人火星取样返回任务关键环节分析[J]. 深空探测学报, 2016, 3(2):114-120. MENG L Z, DONG J, XU Y Q, et al. Analysis of key technologies for unmanned Mars sample return mission[J]. Journal of Deep Space Exploration, 2016, 3(2):114-120.
[5] 叶培建, 果琳丽, 张志贤, 等. 有人参与深空探测任务面临的风险和技术挑战[J]. 载人航天, 2016, 22(2):143-149. YE P J, GUO L L, ZHANG Z X, et al. Risks and challenges of manned deep space exploration mission[J]. Manned Spaceflight, 2016, 22(2):143-149.
[6] YE P J,SUN Z Z,RAO W,et al. Mission overview and key technologies of the first Mars probe of China[J]. Science China Technological Sciences, 2017, 60(5):649-657.
[7] 叶培建, 杨孟飞, 彭兢, 等. 中国深空探测进入/再入返回技术的发展现状和展望[J]. 中国科学:技术科学, 2015, 45(3):229-238. YE P J, YANG M F, PENG J, et al. Review and prospect of atmospheric entry and earth reentry technology of China deep space exploration[J]. Scientia Sinica Technologica, 2015, 45(3):229-238.
[8] 饶炜, 孙泽洲, 孟林智, 等. 火星着陆探测任务关键环节技术途径分析[J]. 深空探测学报, 2016, 3(2):121-128. RAO W, SUN Z Z, MENG L Z, et al. Analysis and design for the Mars entry, descent and landing mission[J]. Journal of Deep Space Exploration, 2016, 3(2):121-128.
[9] 李莹, 叶培建, 彭兢, 等. 火星探测出舱机构的识别定位与坡度测量[J]. 宇航学报, 2016, 37(2):169-174. LI Y, YE P J, PENG J, et al. Egress mechanism recognition and slope measurement for Mars exploration[J]. Journal of Astronautics, 2016, 37(2):169-174.
[10] 孙泽洲, 孟林智. 中国深空探测现状及持续发展趋势[J]. 南京航空航天大学学报, 2015, 47(6):108-113. SUN Z Z, MENG L Z. Current situation and sustainable development trend of deep space exploration in China[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2015, 47(6):108-113.
[11] 叶培建, 黄江川, 孙泽洲, 等. 中国月球探测器发展历程和经验初探[J]. 中国科学:技术科学, 2014, 44(6):543-558. YE P J, HUANG J C, SUN Z Z, et al. The process and experience in the development of Chinese lunar probe[J]. Scientia Sinica Technologica, 2014, 44(6):543-558.
[12] WANG D Y,LI M D,HUANG X Y. Analytical solutions of generalized triples algorithm for flush air-data sensing systems[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(5):1314-1320.
[13] WANG D Y, LI M D, HUANG X Y, et al. Kalman filtering for a quadratic form state equality constraint[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(3):951-958.
[14] 李莹, 叶培建, 彭兢, 等. 基于火星探测的人工标志识别定位[J]. 光学精密工程, 2015, 23(2):566-572. LI Y, YE P J, PENG J, et al. Artificial target recognition and location based on Mars exploration[J]. Optics and Precision Engineering, 2015, 23(2):566-572.
[15] 于登云, 孙泽洲, 孟林智, 等. 火星探测发展历程与未来展望[J]. 深空探测学报, 2016, 3(2):108-113. YU D Y, SUN Z Z, MENG L Z, et al. The development process and prospects for Mars exploration[J]. Journal of Deep Space Exploration, 2016, 3(2):108-113.
[16] 吴伟仁, 于登云, 黄江川, 等. 太阳系边际探测研究[J]. 中国科学:信息科学, 2019, 49(1):1-16. WU W R, YU D Y, HUANG J C, et al. Exploring the solar system boundary[J]. Scientia Sinica Information, 2019, 49(1):1-16.
[17] 房建成. 宁晓琳, 田玉龙. 航天器自主天文导航原理与方法[M]. 北京:国防工业出版社, 2017.
[18] 潘科炎. 航天器的自主导航技术[J]. 航天控制, 1994(2):18-27. PAN K Y. Autonomous navigation technique for spacecrafts[J]. Aerospace Control, 1994(2):18-27.
[19] 李俊峰, 崔文, 宝音贺西. 深空探测自主导航技术综述[J]. 力学与实践, 2012, 34(2):1-9. LI J F, CUI W, BAOYIN H X. A survey of autonomous navigation for deep space exploration[J]. Mechanics and Engineering, 2012, 34(2):1-9.
[20] LI S, CUI P Y, CUI H T. Autonomous navigation and guidance for landing on asteroids[J]. Aerospace Science and Technology, 2006, 10(3):239-247.
[21] 王大轶, 胡启阳, 胡海东, 等. 非合作航天器自主相对导航研究综述[J]. 控制理论与应用, 2018, 35(10):5-17. WANG D Y, HU Q Y, HU H D, et al. Review of autonomous relative navigation for non-cooperative spacecraft[J]. Control Theory & Applications, 2018, 35(10):5-17.
[22] 王大轶, 李茂登, 黄翔宇. 火星进入段自主导航技术研究综述[J]. 空间控制技术与应用, 2016, 42(5):1-7. WANG D Y, LI M D, HUANG X Y. Review of the Mars atmospheric entry autonomous navigation technology[J]. Aerospace Control and Application, 2016, 42(5):1-7.
[23] 冀红霞, 宗红, 黄翔宇. 基于特征值分解的小天体着陆自主导航系统可观度分析[J]. 空间控制技术与应用, 2019, 45(1):1-8. JI H X, ZHONG H, HUANG X Y. Observability analysis of small celestial autonomous landing navigation system based on eigenvalue decomposition[J]. Aerospace Control and Application, 2019, 45(1):1-8.
[24] 王大轶, 徐超, 黄翔宇. 深空探测着陆过程序列图像自主导航综述[J]. 哈尔滨工业大学学报, 2016, 48(4):1-12. WANG D Y, XU C, HUANG X Y. Overview of autonomous navigation based on sequential images for planetary landing[J]. Journal of Harbin Institute of Technology, 2016, 48(4):1-12.
[25] 王大轶, 李茂登, 黄翔宇, 等. 航天器多源信息融合自主导航技术[M]. 北京:北京理工大学出版社, 2018. WANG D Y, LI M D, HUANG X Y, et al. Spacecraft autonomous navigation technology based on multi-source information fusion[M]. Beijing:Beijing Institute of Technology Press, 2018.
[26] 王大轶, 魏春岭, 熊凯. 航天器自主导航技术[M]. 北京:国防工业出版社, 2017. WANG D Y, WEI C L, XIONG K. Autonomous navigation technology for spacecraft[M]. Beijing:National Defense Industry Press, 2017.
[27] MOURIKIS A I, TRAWNY N, ROUMELIOTIS S I, et al. Visionaided inertial navigation for spacecraft entry, descent, and landing[J]. IEEE Transactions on Robotics, 2009, 25(2):264-280.
[28] LI S, CUI P Y, CUI H T. Vision-aided inertial navigation for pinpoint planetary landing[J]. Aerospace Science and Technology, 2007, 11(6):499-506.
[29] 周姜滨, 袁建平, 岳晓奎, 等. 一种快速精确的捷联惯性导航系统静基座自主对准新方法研究[J]. 宇航学报, 2008, 29(1):133-137, 149. ZHOU J B, YUAN J P, YUE X K, et al. A new fast and precision approach for SINS stationary serf-alignment[J]. Journal of Astronautics, 2008, 29(1):133-137, 149.
[30] YU M, LI S, HUANG X Y, et al. A novel inertial-aided feature detection model for autonomous navigation in planetary landing[J]. Acta Astronautica, 2018(152):667-681.
[31] 吴伟仁, 李骥, 黄翔宇, 等. 惯导/测距/测速相结合的安全软着陆自主导航方法[J]. 宇航学报, 2015, 36(8):893-899. WU W R, LI J, HUANG X Y, et al. INS/rangefinder/velocimetry based autonomous navigation method for safe landing[J]. Journal of Astronautics, 2015, 36(8):893-899.
[32] 宋利芳, 房建成. 基于UPF的航天器自主天文导航方法[J]. 航天控制, 2005, 23(6):31-34 SONG L F, FANG J C. Spacecraft autonomous celestial navigation based on the unscented particle filter[J]. Aerospace Control, 2005, 23(6):31-34.
[33] 王鹏, 张迎春. 基于天文/GPS的HEO卫星自主导航方法[J]. 控制与决策, 2015, 30(3):519-525. WANG P, ZHANG Y C. Autonomous navigation method of high elliptical orbit satellite based on celestial navigation and GPS[J]. Control and Decision, 2015, 30(3):519-525.
[34] 张瑜, 房建成. 基于Unscented卡尔曼滤波器的卫星自主天文导航研究[J]. 宇航学报, 2003, 24(6):646-650. ZHANG Y, FANG J C. Study of the satellite autonomous celestial navigation based on the unscented Kalman filter[J]. Journal of Astronautics, 2003, 24(6):646-650.
[35] 熊凯, 魏春岭, 刘良栋. 基于脉冲星的空间飞行器自主导航技术研究[J]. 航天控制, 2007, 25(4):36-40. XIONG K, WEI C L, LIU L D. Research on the spacecraft autonomous navigation using pulsars[J]. Aerospace Control, 2007, 25(4):36-40.
[36] 李建军, 王大轶. 摄动因素对火星环绕段轨道长期影响研究[J]. 深空探测学报, 2017, 4(1):77-81. LI J J, WANG D Y. The analysis for long-term influence of perturbations on orbit around Mars[J]. Journal of Deep Space Exploration, 2017, 4(1):77-81.
[37] 李建军, 王大轶. 一种图像辅助火星着陆段自主导航方法[J]. 宇航学报, 2016, 37(6):687-694. LI J J, WANG D Y. An image-based autonomous navigation method for precise landing on Mars[J]. Journal of Astronautics, 2016, 37(6):687-694.
[38] 李建军, 王大轶. 基于信息融合的火星环绕段自主导航方法[J]. 航天控制, 2016, 34(5):27-32. LI J J, WANG D Y. Information-fusion-integrated navigation for satellite around Mars[J]. Aerospace Control, 2016, 34(5):27-32.
[39] XU C, WANG D Y, HUANG X Y. Landmark-based autonomous navigation for pinpoint planetary landing[J]. Advances in Space Research, 2016, 58(11):2313-2327.
[40] XU C, WANG D Y, HUANG X Y. Autonomous navigation based on sequential images for planetary landing in unknown environments[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(10):2587-2602.
[41] BATTIN R H. Astronautical guidance[M]. New York-San FranciscoToronto-London:McGraw-Hill, 1964.
[42] 孙泽洲, 张廷新, 张熇, 等. 嫦娥三号探测器的技术设计与成就[J]. 中国科学:技术科学, 2014, 44(4):331-343. SUN Z Z, ZHANG T X, ZHANG H, et al. The technical design and achievements of Chang' E-3 probe[J]. Scientia Sinica Technologica, 2014, 44(4):331-343.
[43] 叶培建, 孙泽洲, 张熇, 等. 嫦娥四号探测器系统任务设计[J]. 中国科学:技术科学, 2019, 49(2):138-146. YE P J, SUN Z Z, ZHANG H, et al. Mission design of Chang' e-4 probe system[J]. Scientia Sinica Technologica, 2019, 49(2):138-146.
[44] 王大轶, 黄翔宇, 魏春玲. 基于光学成像测量的深空探测自主控制原理与技术[M]. 北京:中国宇航出版社, 2012.
[45] 郭敏文, 李茂登, 黄翔宇, 等. 非一致终端约束下火星大气进入段制导律设计[J]. 深空探测学报, 2017, 4(2):184-189. GUO M W, LI M D, HAUNG X Y, et al. On guidance algorithm for Martian atmospheric entry in nonconforming terminal constraints[J]. Journal of Deep Space Exploration, 2017, 4(2):184-189.
[46] 何英姿, 魏春岭, 汤亮. 空间操作控制技术研究现状及发展趋势[J]. 空间控制技术与应用, 2014, 40(1):1-8. HE Y Z, WEI C L, TANG L. A survey on space operations control[J]. Aerospace Control and Application, 2014, 40(1):1-8.
[47] JIANG X Q, LI S. Enabling technologies for Chinese Mars lander guidance system[J]. Acta Astronautica, 2017(133):375-386.
[48] LI S,JIANG X Q,LIU Y F. Innovative Mars entry integrated navigation using modified multiple model adaptive estimation[J]. Aerospace Science and Technology, 2014(39):403-413.
[49] YAN H, TAN S P, HE Y Z. A small-gain method for integrated guidance and control in terminal phase of reentry[J]. Acta Astronautica, 2017(132):282-292.
[50] 黄翔宇, 李茂登. 月球和火星探测任务捕获制动控制技术方案对比[J]. 载人航天, 2018, 24(4):464-469. HUANG X Y, LI M D. Comparison of capture and brake control schemes for lunar and Mars exploration[J]. Manned Spaceflight, 2018, 24(4):464-469.
[51] 董天舒, 何英姿. 基于增益分配的航天器高精度指向跟踪控制[J]. 航天控制, 2016, 34(1):50-56. DONG T S, HE Y Z. A high precision attitude pointing tracking control for spacecraft based on the gain schedule[J]. Aerospace Control,2016, 34(1):50-56.
[52] 孙泽洲, 张熇, 贾阳, 等. 嫦娥三号探测器地面验证技术[J]. 中国科学:技术科学, 2014, 44(4):369-376. SUN Z Z, ZHANG H, JIA Y, et al. Ground validation technologies for Chang' E-3 lunar spacecraft[J]. Scientia Sinica Technologica, 2014, 44(4):369-376.
[53] LIU H L, HE Y Z, YAN H, et al. Tether tension control law design during orbital transfer via small-gain theorem[J]. Aerospace Science and Technology, 2017(63):191-202.
[54] 崔祜涛, 崔平远. 软着陆小行星的自主导航与制导[J]. 宇航学报, 2002, 23(5):1-4. CUI H T, CUI P Y. Autonomous navigation and guidance for softlanding asteroid[J]. Journal of Astronautics, 2002, 23(5):1-4.
[55] 张晓文, 王大轶, 黄翔宇. 深空探测转移轨道自主中途修正方法研究[J]. 空间控制技术与应用, 2009, 35(4):27-33. ZHANG X W, WANG D Y, HUANG X Y. Study on the autonomous midcourse correction during cruise phase of interplanetary exploration[J]. Aerospace Control and Application, 2009, 35(4):27-33.
[56] 李智斌. 航天器智能自主控制技术发展现状与展望[J]. 航天控制, 2002, 20(4):1-7. LI Z B. Current situation and prospective of intelligent autonomous control for spacecrafts[J]. Aerospace Control, 2002, 20(4):1-7.
[57] 吴宏鑫, 胡军, 解永春. 航天器智能自主控制研究的回顾与展望[J]. 空间控制技术与应用, 2016, 42(1):1-6. WU H X, HU J, XIE Y C. Spacecraft intelligent autonomous control:past, present and future[J]. Aerospace Control and Application, 2016, 42(1):1-6.
[58] 吴宏鑫, 谈树萍. 航天器控制的现状与未来[J]. 空间控制技术与应用, 2012, 38(5):1-7. WU H X, TAN S P. Spacecraft control:present and future[J]. Aerospace Control and Application, 2012, 38(5):1-7.
[59] 于正湜, 崔平远. 行星着陆自主导航与制导控制研究现状与趋势[J]. 深空探测学报, 2016, 3(4):345-355. YU Z S, CUI P Y. Research status and developing trend of the autonomous navigation, guidance, and control for planetary landing[J]. Journal of Deep Space Exploration, 2016, 3(4):345-355.
[60] 黄翔宇, 张洪华, 王大轶, 等."嫦娥三号" 探测器软着陆自主导航与制导技术[J]. 深空探测学报, 2014, 1(1):52-59. HUANG X Y, ZHANG H H, WANG D Y, et al. Autonomous navigation and guidance for Chang' E-3 soft landing[J]. Journal of Deep Space Exploration, 2014, 1(1):52-59.
[61] 张洪华, 梁俊, 黄翔宇, 等. 嫦娥三号自主避障软着陆控制技术[J]. 中国科学:技术科学, 2014, 44(6):559-568. ZHANG H H, LIANG J, HUANG X Y, et al. Autonomous hazard avoidance control for Chang'E-3 soft landing[J]. Scientia Sinica Technologica, 2014, 44(6):559-568.
[62] YE P J, SUN Z Z, ZHANG H, et al. An overview of the mission and technical characteristics of Chang' E-4 lunar probe[J]. Science China Technological Sciences, 2017, 60(5):658-667.
[63] 吴伟仁, 王琼, 唐玉华, 等."嫦娥4号" 月球背面软着陆任务设计[J]. 深空探测学报, 2017, 4(2):111-117. WU W R, WANG Q, TANG Y H, et al. Design of Chang' E-4 lunar farside soft-landing mission[J]. Journal of Deep Space Exploration, 2017, 4(2):111-117.
[64] 席政. 人工智能在航天飞行任务规划中的应用研究[J]. 航空学报, 2007, 28(4):791-795. XI Z. Study on mission planning of spaceflight applying artificial intelligence[J]. Acta Aeronautica ET Astronautica Sinica, 2007, 28(4):791-795.
[65] 崔平远, 徐瑞, 朱圣英, 等. 深空探测器自主技术发展现状与趋势[J]. 航空学报, 2013, 35(1):13-28. CUI P Y, XU R, ZHU S Y, et al. State of the art and development trends of on-board autonomy technology for deep space explorer[J]. Acta Aeronautica ET Astronautica Sinica, 2013, 35(1):13-28.
[66] CHOUINARD C, KNIGHT R, JONES G, et al. Orbital express mission operations planning and resource management using ASPEN[C]//SPIE Defense and Security Symposium. Orlando,Florida, United States:SPIE, 2008.
[67] RABIDEAU G, CHIEN S, MANN T, et al. Interactive, repair-based planning and scheduling for shuttle payload operations[C]//1997 IEEE Aerospace Conference. Aspen, CO, USA, USA:IEEE, 1997.
[68] SMITH B,MILLAR W,DUNPHY J,et al. Validation and verification of the remote agent for spacecraft autonomy[C]//1999 IEEE Aerospace Conference. Aspen, CO:IEEE, 1999.
[69] VERFAILLIE G,PRALET C,LEMAÎTRE M. How to model planning and scheduling problems using constraint networks on timelines[J]. The Knowledge Engineering Review, 2010, 25(3):319-336.
[70] BARREIRO J, BOYCE M, DO M, et al. EUROPA:a platform for AI planning, scheduling, constraint programming, and optimization[C]//4th International Competition on Knowledge Engineering for Planning and Scheduling(ICKEPS).[S.l]:ICKEPS, 2012.
[71] BEDRAX-WEISS T, MCGANN C, IATAURO M. EUROPA 2:plan database services for planning and scheduling applications[C]//International Conference on Automated Planning and Scheduling. USA:AIAA, 2005.
[72] LISMAN S, CHANG D, HADAEGH F. Autonomous guidance and control for the new millennium DS-1 spacecraft[C]//Guidance, Navigation, and Control Conference. USA:AIAA, 1996.
[73] 王大轶, 屠园园, 刘成瑞, 等. 航天器控制系统可重构性的内涵与研究综述[J]. 自动化学报, 2017, 43(10):13-28. WANG D Y, TU Y Y, LIU C R, et al. Connotation and research of reconflgurability for spacecraft control systems:a review[J]. Acta Automatica Sinica, 2017, 43(10):13-28.
[74] 王大轶, 符方舟, 刘成瑞, 等. 控制系统可诊断性的内涵与研究综述[J]. 自动化学报, 2018, 44(9):3-19. WANG D Y, FU F Z, LIU C R, et al. Connotation and research status of diagnosability of control systems:a review[J]. Acta Automatica Sinica, 2018, 44(9):3-19.
[75] WANDER A, FÖRSTNER R. Innovative fault detection, isolation and recovery strategies on-board spacecraft:state of the art and research challenges[M].[S. l]:Deutsche Gesellschaft Für Luft-Und Raumfahrt-Lilienthal-Oberthev, 2013.
[76] WILLIAMSON W R,SPEYER J L,DANG V T,et al. Fault detection and isolation for deep space satellites[J]. Journal of guidance, control, and dynamics, 2009, 32(5):1570-1584.
[77] 符方舟, 王大轶, 李文博. 复杂动态系统的实际非完全失效故障的可诊断性评估[J]. 自动化学报, 2017, 43(11):1941-1949. FU F Z, WANG D Y, LI W B. Quantitative evaluation of actual LOE fault diagnosability for dynamic systems[J]. Acta Automatica Sinica,2017, 43(11):1941-1949.
[78] FU F Z,WANG D Y,LI W B,et al. Evaluation of fault diagnosability for dynamic systems with unknown uncertainties[J]. IEEE Access, 2018(6):16737-16745.
[79] FU F Z, WANG D Y, LIU P, et al. Evaluation of fault diagnosability for networked control systems subject to missing measurements[J]. Journal of the Franklin Institute, 2018, 355(17):8766-8779.
[80] 屠园园, 王大轶, 李文博. 考虑时间特性影响的控制系统可重构性定量评价方法研究[J]. 自动化学报, 2018, 44(7):1260-1270. TU Y Y, WANG D Y, LI W B. Quantitative reconfigurability evaluation for control systems in view of time properties[J]. Acta Automatica Sinica, 2018, 44(7):1260-1270.
[81] 屠园园, 王大轶, 李文博. 考虑可靠性影响的受限系统可重构性量化评价[J]. 控制理论与应用, 2017, 34(7):875-884. TU Y Y, WANG D Y, LI W B. Reconfigurability evaluation for a class of constrained systems in consideration of reliability[J]. Control Theory & Applications, 2017, 34(7):875-884.