PDF(1253 KB)
Article
Article
Orbit Dynamics in the Vicinity of Asteroids with Solar Perturbation
- NI Yanshuo1, BAOYIN Hexi2, LI Junfeng3
Author information
+
1. School of Aerospace, Tsinghua University,Beijing 100087 ,China
2. School of Aerospace, Tsinghua University,Beijing 100088 ,China
3. School of Aerospace, Tsinghua University,Beijing 100089 ,China
Show less
History
+
Received |
Revised |
09 Dec 2013 |
05 Feb 2014 |
Issue Date |
|
20 May 2022 |
|
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
This is a preview of subscription content, contact
us for subscripton.
References
[1] Zhuravlev S G. Stability of the libration points of a rotating triaxial ellipsoid[J]. Celestial Mechanics, 1972, 6(3):255-267.
[2] Zhuravlev S G. About the stability of the libration points of a rotating triaxial ellipsoid in a degenerate case[J].Celestial Mechanics, 1973,8(1):75一84.
[3] Scheeres D J. Dynamics about uniformly rotating triaxial ellipsoids:applications to asteroids[J]. Icarus, 1994, 110(2):225-238.
[4] Macmillan W D. Dynamics of rigid bodies[M].New York;McGraw-Hill, 1936.
[5] Kaula W M. Theory of satellite geodesy[M]. Waltham; Blaisdell,1966.
[6] Heiskanen W A, Moritz H. Physical geodesy[J].Bulletin Geodesique (1946一1975),1967,86(1):491-492.
[7] Werner R A, Scheeres D J. Exterior gravitation of a polyhedron derived and compared with harmonic and mascon gravitation representations of asteroid 4769 Castalia[J].Celestial Mechanics
[17] and Dynamical Astronomy, 1996, 65(3):313-344.
[8] Werner R A. The gravitational potential of a homogeneous polyhedron or don't cut corners[J].Celestial Mechanics and DynamicalAstronomy, 1994, 59(3):253一278.
[9] Yu Y, Baoyin H X. Generating families of 3D periodic orbits about asteroids[J].Monthly Notices of the Royal Astronomical Society 2012, 427(1):872一881.
[10] Baoyin H X, Li J, et al. Orbits and manifolds near the equilibrium points around a rotating asteroid[J].Astrophysics and Space Science, 2014, 349(1):83一106.
[11] Yu Y, Baoyin H X. Orbital dynamics in the vicinity of asteroid 216 Kleopatra[J].The Astronomical Journal,2012, 143(3):62一71.
[12] Hartman P. Ordinary differential equations[M].New York;Wiley,1964.
[13] Hamilton D P, Burns J A. Orbital stability zones about asteroids;II. The destabilizing effects of eccentric orbits and of solarradiation[J].Icarus, 1992,96(1):43一64.
[14] Ostro S J, Scott R, Nolan M C, et al. Radar observations of asteroid 216 Kleopatra[J]?Science, 2000,288(5467):836-839.
[15] Descamps P, Marehis F, Berthier J, et al. Triplicity and physical characteristics of asteroid (216) Kleopatra[J].Icarus, 2011,211(2):1022一1033.
[16] Gaskell R W. Gaskell Eros shape model V1. 0. NEAR-A-MSI-S-EROSSHAPE-V1.0. NASA Planetary Data System, 20}[EB/OL].[2008-02-23] http;//sbn. psi. edu/pds/resource/erosshape. html.
[17] Yeomans D K, Antreasian P G, Barriot J P, et al. Radio science results during the NEAR-Shoemaker spacecraft rendezvous with Eros[J].Science, 2000, 289(5487):2085一2088.
[18] Li J, Zhang X. Classical mechanics (2nd edition)[M].Beijing; Tsinghua University Press, 2010.
[19] Zhang Z, Cui H, Cui P, et al. Modeling and analysis of gravity field of 433 Eros using polyhedron model method[C].2nd International Conference on Information Engineering and Computer Science, Wuhan, China, Dec. 25一26,2010; IEEE.
[20] Scheeres D J,Williams B G, Miller J K. Evaluation of the dynamic environment of an asteroid;applications to 433 Eros[J].Journal of Guidance, Control,and Dynamics, 2000, 23(3):466一475.