Research Progress of Technologies for Intelligent Landing on Small Celestial Bodies

LIANG Zixuan1,2, LU Bingjie1,2, CUI Pingyuan1,2, ZHU Shengying1,2, XU Rui1,2, GE Dantong1,2, BAOYIN Hexi3, SHAO Wei4

PDF(1272 KB)
PDF(1272 KB)
Journal of Deep Space Exploration ›› 2024, Vol. 11 ›› Issue (3) : 213-224. DOI: 10.15982/j.issn.2096-9287.2024.20240035
Special Issue:Intelligent Landing on Small Celestial Bodies

Research Progress of Technologies for Intelligent Landing on Small Celestial Bodies

  • LIANG Zixuan1,2, LU Bingjie1,2, CUI Pingyuan1,2, ZHU Shengying1,2, XU Rui1,2, GE Dantong1,2, BAOYIN Hexi3, SHAO Wei4
Author information +
History +

Abstract

To meet the robust landing requirement in the exploration and exploitation of small celestial bodies,based on the landing exploration missions in China and abroad,the requirements of intelligent landing technologies were analyzed and the corresponding research progress was discussed. Firstly,the landing exploration missions for small celestial bodies were reviewed. Then,the traditional rigid landing mode and the novel intelligent flexible landing concept of small celestial bodies were introduced,and the intelligent technology requirements of small celestial body landing were sorted out. On this basis,the research progress on intelligent landing technologies was summarized from the aspects of dynamics,mission planning,perception,navigation,guidance and control. Finally,the development trend of landing technology of small celestial bodies is envisioned.

Keywords

small celestial body / intelligent landing / flexible landing / mission planning / guidance navigation and control

Cite this article

Download citation ▾
LIANG Zixuan, LU Bingjie, CUI Pingyuan, ZHU Shengying, XU Rui, GE Dantong, BAOYIN Hexi, SHAO Wei. Research Progress of Technologies for Intelligent Landing on Small Celestial Bodies. Journal of Deep Space Exploration, 2024, 11(3): 213‒224 https://doi.org/10.15982/j.issn.2096-9287.2024.20240035

References

[1] YEOMANS D K,CHODAS P W,KEESEY M S,et al. Targeting an asteroid-the Galileo spacecraft’s encounter with 951 Gaspra[J]. Astronomical Journal,1993,105(4):1547-1552.
[2] AZADMANESH M,ROSHANIAN J,HASSANALIAN M. On the importance of studying asteroids:a comprehensive review[J]. Progress in Aerospace Sciences,2023,142:100957.
[3] VEVERKA J,FARQUHAR B,ROBINSON M,et al. The landing of the NEAR-Shoemaker spacecraft on asteroid 433 Eros[J]. Nature,2001,413(6854):390-393.
[4] BIERHAUS E B,CLARK B C,HARRIS J W,et al. The OSIRIS-REx spacecraft and the touch-and-go sample acquisition mechanism(TAGSAM)[J]. Space Science Reviews,2018,214:107.
[5] HENSHALL T. The surface of asteroid Bennu[J]. Nature Reviews Materials,2019,4(4):228.
[6] KAWAGUCHI J,FUJIWARA A,UESUGI T. Hayabusa-its technology and science accomplishment summary and Hayabusa-2[J]. Acta Astronautica,2008,62(10-11):639-647.
[7] TSUDA Y,SAIKI T,TERUI F,et al. Hayabusa 2 mission status:landing,roving and cratering on asteroid Ryugu[J]. Acta Astronautica,2020,171:42-54.
[8] GOESMANN F,ROSENBAUER H,BREDEHöFT J H,et al. Organic compounds on comet 67P/Churyumov-Gerasimenko revealed by COSAC mass spectrometry[J]. Science,2015,349(6247):6891-6893.
[9] GEURTS K,FANTINATI C,ULAMEC S,et al. Rosetta lander:on-comet operations execution and recovery after the unexpected landing[C]//Proceedings of SpaceOps 2016 Conference. Daejeon,Korea:AIAA,2016.
[10] SHARKEY B N L,REDDY V,MALHOTRA R,et al. Lunar-like silicate material forms the Earth quasi-satellite(469219)2016 HO3 Kamo?oalewa[J]. Communications Earth & Environment,2021,2:231.
[11] ANTREASIAN P G,CHESLEY S R,MILLER J K,et al. The design and navigation of the NEAR-Shoemaker landing on Eros[C]//Proceedings of AAS/AIAA Astrodynamics Specialists Conference. Quebec,Canada:AIAA,2001.
[12] ROLL R,WITTE L. ROSETTA lander Philae:touch-down reconstruction[J]. Planetary and Space Science,2016,125:12-19.
[13] 崔平远,陆晓萱,朱圣英,等. 小天体柔性附着状态协同估计方法[J]. 宇航学报,2022,43(9):1219-1226.
CUI P Y,LU X X,ZHU S Y,et al. Cooperative state estimation method for small celestial body flexible landing[J]. Journal of Astronautics,2022,43(9):1219-1226.
[14] 崔平远,张成宇,朱圣英,等. 小天体柔性附着技术[J]. 宇航学报,2023,44(6):805-816.
CUI P Y,ZHANG C Y,ZHU S Y,et al. Technologies for flexible landing on small celestial bodies[J]. Journal of Astronautics,2023,44(6):805-816.
[15] PARK R S,WERNER R A,BHASKARAN S. Estimating small-body gravity field from shape model and navigation data[J]. Journal of Guidance,Control,and Dynamics,2010,33(1):1-10.
[16] BARNETT C T. Theoretical modeling of the magnetic and gravitational fields of an arbitrarily shaped three-dimensional body[J]. Geophysics,1976,41(6):1353-1364.
[17] WERNER R A. The gravitational potential of a homogeneous polyhedron or don't cut corners[J]. Celestial Mechanics and Dynamical Astronomy,1994,59(3):253-278.
[18] ZHANG Y H,QIAN Y J,LI X,et al. Resonant orbit search and stability analysis for elongated asteroids[J]. Astrodynamics,2023,7(1):51-67.
[19] WAL S V,REID R G,SCHEERES D J. Simulation of nonspherical asteroid landers:contact modeling and shape effects on bouncing[J]. Journal of Spacecraft and Rockets,2019,57(3):1-22.
[20] CHENG L,WANG Z B,JIANG F H,et al. Fast generation of optimal asteroid landing trajectories using deep neural networks[J]. IEEE Transactions on Aerospace and Electronic Systems,2020,56(4):2642-2655.
[21] PASQUALE A,SILVESTRINI S,CAPANNOLO A,et al. Small bodies non-uniform gravity field on-board learning through Hopfield neural networks[J]. Planetary and Space Science,2022,212:105425.
[22] ZHAO Y J,YANG H W,LI S,et al. On-board modeling of gravity fields of elongated asteroids using Hopfield neural networks[J]. Astrodynamics,2023,7(1):101-114.
[23] WANG T Z,QUAN Q Q,TANG D W,et al. Progress in the development of small-celestial-body anchoring robots[J]. Nature Astronomy,2023,7:380-390.
[24] YE K,LI L,ZHU H P. A note on the Hertz contact model with nonlinear damping for pounding simulation[J]. Earthquake Engineering & Structural Dynamics,2009,38(9):1151-1163.
[25] HUNT K H,CROSSLEY F. Coefficient of restitution interpreted as damping in vibroimpact[J]. Journal of Applied Mechanics,1975,42(2):440.
[26] LANKARANI H M,NIKRAVESH P E. Continuous contact force models for impact analysis in multibody systems[J]. Nonlinear Dynamics,1994,5(2):193-207.
[27] HU S W,GUO X L. A dissipative contact force model for impact analysis in multibody dynamics[J]. Multibody System Dynamics,2015,35(2):131-151.
[28] POURSINA M,NIKRAVESH P E. Optimal damping coefficient for a class of continuous contact models[J]. Multibody System Dynamics,2020,50(2):169-188.
[29] TARDIVEL S,SCHEERES D J,MICHEL P,et al. Contact motion on surface of asteroid[J]. Journal of Spacecraft and Rockets,2014,51(6):1857-1871.
[30] ZENG X Y,WEN T G,LI Z W,et al. Natural landing simulations on generated local rocky terrains for asteroid cubic lander[J]. IEEE Transactions on Aerospace and Electronic Systems,2022,58(4):3492-3508.
[31] ZHANG Y L,LI J F,ZENG X Y,et al. High-fidelity landing simulation of small body landers:modeling and mass distribution effects on bouncing motion[J]. Aerospace Science and Technology,2021,119(1):107149.
[32] CHENG B,YU Y,BAOYIN H X. Numerical simulations of the controlled motion of a hopping asteroid lander on the regolith surface[J]. Monthly Notices of the Royal Astronomical Society,2019,485(3):3088-3096.
[33] CHEN Z L,LONG J T,CUI P Y. Trajectory design for landing on small celestial body with flexible lander[J]. Acta Astronautica,2023,212:492-504.
[34] YAN W F,FENG R Y,BAOYIN H X. Stability of a flexible asteroid lander with landing control[J]. Aerospace,2022,9(11):719.
[35] FENG R Y,ZHANG Y,LIU J Y,et al. Soft robotic perspective and concept for planetary small body exploration[J]. Soft Robotics,2022,9(5):889-899.
[36] VALLAT C,ALTOBELLI N,GEIGER B,et al. The science planning process on the Rosetta mission[J]. Acta Astronautica,2017,133:244-257.
[37] MOUSSI A,FRONTON J F,GAUDON P,et al. The Philae lander:science planning and operations[J]. Acta Astronautica,2016,125:92-104.
[38] POLIT A T,BALRAM-KNUTSON S S,AUDI E,et al. Science operations planning and implementation for the OSIRIS-REx mission,Part 1:Process[C]//Proceedings of 2022 IEEE Aerospace Conference(AERO). Big Sky:IEEE,2022.
[39] BALRAM-KNUTSON S S,LAMBERT D,AUDI E,et al. Science operations planning and implementation for the OSIRIS-REx mission,Part 2:Toolkit[C]//2022 IEEE Aerospace Conference(AERO). Big Sky:IEEE,2022.
[40] ZHAO Y T,XU R,JIANG H P,et al. Decentralized privacy-preserving onboard mission planning for multi-probe system[J]. Acta Astronautica,2021,179:130-145.
[41] 王棒,徐瑞,李朝玉,等. 小天体柔性着陆任务规划的动态时间约束推理方法[J]. 宇航学报,2024,45(2):212-221.
WANG B,XU R,LI Z Y,et al. Dynamic temporal constraint reasoning method for flexible landing mission planning of small celestial body[J]. Journal of Astronautics,2024,45(2):212-221.
[42] ZHU Z,XU R,LI Z Y,et al. Multi-objective optimization of attitude maneuver planning for flexible asteroid lander using population evolutionary algorithm[C]//Proceedings of 74th International Astronautical Congress. Baku,Azerbaijan:IAC,2023.
[43] XU R,CHEN C,LU S Y,et al. Autonomous recovery from spacecraft plan failures by regulatory repair while retaining operability[J]. Aerospace,2022,9:40.
[44] GOLISH D R,DELLAGIUSTINA D N,LI J Y,et al. Disk-resolved photometric modeling and properties of asteroid(101955)Bennu[J]. Icarus,2021,357:113724.
[45] SILVESTRINI S,LAVAGNA M. Deep learning and artificial neural networks for spacecraft dynamics,navigation and control[J]. Drones,2022,6:270.
[46] LU T T,HU W D,LIU C,et al. Relative pose estimation of a lander using crater detection and matching[J]. Optical Engineering,2016,55(2):023102.
[47] PUGLIATTI M,MAESTRINI M. Small-body segmentation based on morphological features with a UNet architecture[J]. Journal of Spacecraft and Rockets,2022,59(6):1821-1835.
[48] CHEN Z H,JIANG J. Crater detection and recognition method for pose estimation[J]. Remote Sensing,2021,13(17):3467.
[49] 蓝朝桢,耿迅,徐青,等. 基于序列影像的小天体三维形状重建方法研究[J]. 深空探测学报(中英文),2014,1(2):140-145.
LAN C Z,GENG X,XU Q,et al. 3D shape reconstruction for small celestial body based on sequence images[J]. Journal of Deep Space Exploration,2014,1(2):140-145.
[50] WATANABE S,HIRABAYASHI M,HIRATA N,et al. Hayabusa 2 observations of the top-shaped carbonaceous asteroid 162173 Ryugu[J]. Science,2019,364(6437):268-272.
[51] EDMUNDSON K L,BECKER K J,BECKER T L,et al. Photogrammetric processing of Osiris-Rex images of Asteroid(101955)Bennu[J]. ISPRS Annals of the Photogrammetry,Remote Sensing and Spatial Information Sciences,2020,V-3-2020:587-594.
[52] GASKELL R W,BARNOUIN-JHA O S,SCHEERES D J,et al. Characterizing and navigating small bodies with imaging data[J]. Meteoritics & Planetary Science,2010,43(6):1049-1061.
[53] HANAK C,CRAIN T,BISHOP R. Crater identification algorithm for the lost in low lunar orbit scenario[C]//Proceedings of 33rd Annual AAS Guidance and Control. Breckenridge,CO:AIAA,2010.
[54] DOWNES L M,STEINER T J,HOW J P. Neural network approach to crater detection for lunar terrain relative navigation[J]. Journal of Aerospace Information Systems,2021,18(7):391-403.
[55] SILVESTRINI S,PICCININ M,ZANOTTI G,et al. Optical navigation for Lunar landing based on Convolutional Neural Network crater detector[J]. Aerospace Science and Technology,2022,123:107503.
[56] DRIVER T,SKINNER K A,DOR M,et al. Astrovision:towards autonomous feature detection and description for missions to small bodies using deep learning[J]. Acta Astronautica,2023,210:393-410.
[57] LUO Z X,ZHOU L,BAI X Y,et al. ASLFeat:learning local features of accurate shape and localization[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Seattle:IEEE,2020.
[58] SARLIN P-E,DETONE D,MALISIEWICZ T,et al. Superglue:learning feature matching with graph neural networks[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Seattle:IEEE,2020.
[59] GE D T,CUI P Y,ZHU S Y. Recent development of autonomous GNC technologies for small celestial body descent and landing[J]. Progress in Aerospace Sciences,2019,110:100551.
[60] ZHU S Y,LIU D C,LIU Y,et al. Observability-based visual navigation using landmarks measuring angle for pinpoint landing[J]. Acta Astronautica,2019,155:313-324.
[61] CUI P Y,GAO X Z,ZHU S Y,et al. Visual navigation based on curve matching for planetary landing in unknown environments[J]. Acta Astronautica,2020,170:261-274.
[62] KALMAN R E. On the general theory of control systems[J]. IFAC Proceedings Volumes,1960,1(1):491-502.
[63] 王大轶,董天舒,侯博文,等. 一类欠观测系统的可观测性研究[J]. 中国科学:物理学 力学 天文学,2022,52(1):214502.
WANG D Y,DONG T S,HOU B W,et al. Observability of a class of under-observation systems[J]. Science China Physics,Mechanics & Astronomy,2022,52:214502.
[64] 常晓华,崔平远,王晓明,等. 基于条件数的能观性度量方法及在自主导航系统中的应用[J]. 宇航学报,2010,31(5):1331-1337.
CHANG X H,CUI P Y,WANG X M,et al. A condition number-based observability analysis method and its application in autonomous navigation system[J]. Journal of Astronautics,2010,31(5):1331-1337.
[65] ZHAO Z D,YU Z S,CUI P Y. A beacon configuration optimization method based on Fisher information for Mars atmospheric entry[J]. Acta Astronautica,2017,133:467-475.
[66] SUN D B,CRASSIDIS J L. Observability analysis of six-degree-of-freedom configuration determination using vector-observations[J]. Journal of Guidance Control and Dynamics,2002,25(6):1149-1157.
[67] XIU Y,ZHU S Y,XU R,et al. Optimal crater landmark selection based on optical navigation performance factors for planetary landing[J]. Chinese Journal of Aeronautics,2023,36(3):254-270.
[68] XU C,HUANG X Y,LI M D,et al. Landmark database selection for vision-aided inertial navigation in planetary landing missions[J]. Aerospace Science and Technology,2021,118:107040.
[69] XIU W B,LONG J T,ZHU S Y,et al. Landmark robust selection for asteroid landing visual navigation[J]. Acta Astronautica,2024,214:665-676.
[70] GAO X L,LUO H Y,NING B K,et al. RL-AKF:an adaptive kalman filter navigation algorithm based on reinforcement learning for ground vehicles[J]. Remote Sensing,2020,12(11):1704.
[71] XIONG K,WEI C L,ZHANG H Y. Q-learning for noise covariance adaptation in extended KALMAN filter[J]. Asian Journal of Control,2020,23(4):1803-1816.
[72] PESCE V,SILVESTRINI S,LAVAGNA M. Radial basis function neural network aided adaptive extended Kalman filter for spacecraft relative navigation[J]. Aerospace Science and Technology,2020,96:105527.
[73] PARK T H,D’AMICO S. Adaptive neural-network-based unscented Kalman filter for robust pose tracking of noncooperative spacecraft[J]. Journal of Guidance,Control,and Dynamics,2023,46(9):1671-1688.
[74] PROENçA P F,GAO Y. Deep learning for spacecraft pose estimation from photorealistic rendering[C]//Proceedings of 2020 IEEE International Conference on Robotics and Automation(ICRA). Paris,France:IEEE,2020.
[75] HUANG H R,SONG B,ZHAO G P,et al. End-to-end monocular pose estimation for uncooperative spacecraft based on direct regression network[J]. IEEE Transactions on Aerospace and Electronic Systems,2023,59:5.
[76] GE D T,CUI P Y,LU X. Parallel state estimation under flexible connections in small celestial body landings[C]//Proceedings of 72nd International Astronautical Congress. Dubai:IAC,2021.
[77] CHE M,CHEN Z,GE D T. Constrained unscented kalman filtering with improved reliability for small celestial body relative navigation[C]//Proceedings of 74th International Astronautical Congress. Baku,Azerbaijan:IAC,2023.
[78] 崔平远,袁旭,朱圣英,等. 小天体自主附着技术研究进展[J]. 宇航学报,2016,37(7):759-767.
CUI P Y,YUAN X,ZHU S Y,et al. Research progress of small body autonomous landing techniques[J]. Journal of Astronautics,2016,37(7):759-767.
[79] HAWKINS M,GUO Y,WIE B. ZEM/ZEV feedback guidance application to fuel-efficient orbital maneuvers around an irregular-shaped asteroid[C]//Proceeding of AIAA Guidance,Navigation,and Control Conference. Minneapolis,Minnesota:AIAA,2012.
[80] CUI P Y,QIN T,ZHU S Y,et al. Trajectory curvature guidance for Mars landings in hazardous terrains[J]. Automatica,2018,93:161-171.
[81] NAKANO R,TAHERI E,HIRABAYASHI M. Time-optimal and fuel-optimal trajectories for asteroid landing via indirect optimization[C]//Proceedings of AIAA SCITECH 2022 Forum. San Diego,CA :AIAA,2022.
[82] PINSON R,LU P. Trajectory design employing convex optimization for landing on irregularly shaped asteroids[C]//Proceedings of AIAA/AAS Astrodynamics Specialist Conference. Long Beach,California:AIAA,2016.
[83] ALANDIHALLAJ M,ASSADIAN N. Soft landing on an irregular shape asteroid using Multiple-Horizon Multiple-Model Predictive Control[J]. Acta Astronautica,2017,140:225-234.
[84] LEE U,MESBAHI M. Constrained autonomous precision landing via dual quaternions and model predictive control[J]. Journal of Guidance,Control,and Dynamics,2017,40(2):292-308.
[85] CHENG L,WANG Z B,SONG Y,et al. Real-time optimal control for irregular asteroid landings using deep neural networks[J]. Acta Astronautica,2020,170:66-79.
[86] FURFARO R,SCORSOGLIO A,LINARES R,et al. Adaptive generalized ZEM-ZEV feedback guidance for planetary landing via a deep reinforcement learning approach[J]. Acta Astronautica,2020,171:156-171.
[87] QI J,GAO H B,YU H T,et al. Integrated attitude and landing control for quadruped robots in asteroid landing mission scenarios using reinforcement learning[J]. Acta Astronautica,2023,204:599-610.
[88] GAUDET B,LINARES R,FURFARO R. Terminal adaptive guidance via reinforcement meta-learning:applications to autonomous asteroid close-proximity operations[J]. Acta Astronautica,2020,171:1-13.
[89] LIANG Z X,LU B J,ZHU S Y. Controllable cone for horizontal landing on asteroids using a flexible probe[J]. Aerospace Science and Technology,2024,145:108869.
[90] ZHAI G,LI J,SUN Y Y,et al. Research on asteroid landing with a new flexible spacecraft[J]. Journal of Aerospace Engineering,2022,35(5):04022068.
[91] ZHANG C,LIANG Z X,CUI P Y,et al. Distributed guidance for flexible spacecraft landing on asteroid[C]//Proceedings of 3rd International Astronautical Congress. Paris,France:IAC,2022.
[92] CUI P Y,ZHANG C Y,LIANG Z X. Optimal attitude control for landing on asteroid with a flexible lander[J]. Aerospace Science and Technology,2024,149.
[93] LU B J,LIANG Z X,ZHU S Y. Intelligent cooperative control method for flexible probe landing on small celestial bodies[C]//Proceedings of 74th International Astronautical Congress. Baku,Azerbaijan:IAC,2023.
[94] ZHAO D Y,ZHU S Y,CUI P Y. Intelligent fuel-optimal guidance strategy for small body flexible landing[C]//Proceedings of 73rd International Astronautical Congress. Paris,France:IAC,2022.
[95] YAN W F,BAOYIN H X. Position-attitude coupling guidance and control for asteroid landing with a flexible lander[J]. Aerospace Science and Technology,2023,141:108567.
PDF(1272 KB)

Accesses

Citations

Detail

Sections
Recommended

/