PDF(1512 KB)
Topic: Lava Tubes Exploration in Solar System
Localization Methods for Tube Exploration
- KOU Yuke1,2, WAN Wenhui1, DI Kaichang1
Author information
+
1. Key Laboratory of Remote Sensing and Digital Earth, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China
Show less
History
+
Received |
Revised |
Published |
04 Dec 2023 |
14 Mar 2024 |
26 Aug 2024 |
Issue Date |
|
26 Aug 2024 |
|
Abstract
Aiming at the localization of lunar lava tubes, the volcanic lava cave in Haikou City, Hainan Province, was selected as the experimental area for simulated lunar lava. Localization methods including stereo vision-based method, laser scanning point cloud based method, vision fused IMU based method, laser point cloud fused IMU based method, and vision, laser point cloud and IMU fused method are applied to localization in the field areas of simulated lava tubes. The experimental results show that the accuracy of stereo vision could reach 3.59% in long-distance travelling mode, but the accuracy and robustness decreased significantly in harsh lighting conditions. Lidar could achieve a similar-level accuracy as vision-based method, reaching 1.89% in local area, but its robustness was affected by data acquisition rate and field of view. The integrated localization method using stereo vision, LiDAR, and IMU achieved robust localization results in lava tube areas with extremely harsh lighting and terrain undulations, making it the preferred choice for long-distance continuous localization. The research conclusions provide valuable reference for subsequent research on sensor configuration and localization methods for lunar lava exploration missions.
Keywords
lunar lava tube /
navigation and localization /
multiple sensors /
deep space exploration
Cite this article
Download citation ▾
KOU Yuke, WAN Wenhui, DI Kaichang.
Localization Methods for Tube Exploration. Journal of Deep Space Exploration, 2024, 11(4): 338‒345 https://doi.org/10.15982/j.issn.2096-9287.2024.20230184
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
This is a preview of subscription content, contact
us for subscripton.
References
[1] 肖龙,黄俊,赵佳伟,等. 月面熔岩管洞穴探测的意义与初步设想[J]. 中国科学:物理学 力学 天文学,2018,48(11):585-589.
XIAO L,HUANG J,ZHAO J W,et al. The significance and preliminary ideas of detecting lunar lava tube caves[J]. Chinese Science:Physics,Mecha-nics,Astronomy,2018,48(11):585-589.
[2] 王赤,林杨挺,裴照宇,等. 月球科研站的关键科学问题[J]. 中国科学基金,2022,36(6):830-840.
WANG C,LIN Y T,PEI Z Y,et al. Key scientific issues of lunar research stations[J]. Science Founda-tion in China,2022,36(6):830-840.
[3] GREELEY R. Lava tubes and channels in the lunar Marius Hills[J]. Earth Moon Planets. 1971,3(3):289-314.
[4] HARUYAMA J,HIOKI K,SHIRAO K M,et al. Possible lunar lava tube skylight observed by SELENE cameras[J]. Geophysical Research Letters,2009,36(21):206-211.
[5] ROBINSON M S,ASHLEY J W,BOYD A K,et al. Confirmation of sublunarean voids and thin layering in mare deposits[J]. Planet Space Sci,2012,69(1):18-27.
[6] BLAIR D M,CHAPPAZ L,SOOD R,et al. The structural stability of lunar lava tubes[J]. Icarus. 2017,282:47-55.
[7] 吴伟仁,刘继忠,唐玉华,等. 中国探月工程[J]. 深空探测学报(中英文),2019,6(5):405-416.
WU W R,LIU J Z,TANG Y H,et al. China lunar exploration program[J]. Journal of Deep Space Exploration,2019,6(5):405-416.
[8] 邸凯昌,王镓,邢琰,等. 深空探测车环境感知与导航定位技术进展与展望[J]. 测绘学报,2021,50(11):1457-1468.
DI K C,WANG J,XING Y,et al. Progresses and prospects of environment perception and navigation for deep space exploration rovers[J]. Acta Geodaetica et Cartographica Sinica,2021,50(11):1457-1468.
[9] MAIMONE M,CHENG Y,MATTIES L. Two years of visual odometry on the Mars Exploration Rovers[J]. Journal of Field Robotics. 2007,24(3):169-186.
[10] LIU Z Q,DI K C,PEN M,et al. High precision landing site mapping and rover localization for Chang'e-3 mission[J]. Science China Physics Mech-anics & Astronomy,2015,58(1):1-11.
[11] LIU Z Q,DI K C,LI J,et al. Landing site topographic mapping and rover localization for Chang’e-4 mission[J]. Science China Information Sciences,2020,63:170-181.
[12] DI K C,LIU Z Q,YUE Z Y. Mars rover localization based on feature matching between ground and orbital imagery[J]. Photogrammetric Engineering and Remote Sensing,2011,77(8):781-791.
[13] SHI Y L,ZHANG W M,YAO Z,et al. Design of a hybrid indoor location system based on multi-sensor fusion for robot navigation[J]. Sensors,2018,18(10):3581-3599.
[14] HE C,MA R,QU H,et al. Research on mobile robot positioning and navigation system based on multi-sensor fusion[J]. Journal of Physics:Confer-ence Series,2020,1684(1):012011-012017.
[15] WANG R Z,WAN W H,DI K C,et al. A high-accuracy indoor-positioning method with auto-mated RGB-D image database construction[J]. Remote Science,2019,11:2572-2591.
[16] 唐少霞,毕华,赵志忠,等. 海口石山火山群国家地质公园地质旅游资源开发探讨[J]. 国土与自然资源研究,2011(2):59-60.
TANG S X,BI H,ZHAO Z Z,et al. Research on development of geological tourism resources of Volcanic Cluster National geological parks at Haikou Shishan[J]. Territory & Natural Resources Study,2011(2):59-60.
[17] 董跃龙. 海口石山火山群典型熔岩隧道调查研究[D]. 北京: 中国地质科学院, 2022.
DONG Y L. Investigation on typical lava tunnels of Shishan Volcanic Group in Haikou[D]. Beijing: Chinese Academy of Geological Sciences, 2022.
[18] DAVID T,ALBERTO P,EMANUELE M. A robust and easy to implement method for IMU calibration without external equipments [C]//Proceedings of the IEEE,International Conference on Robotics and Automation. Hong Kong,China:IEEE,2014:3042-3049.
[19] FURGALE P,REHDER J,SIEGWART R. Unified temporal and spatial calibration for multi-sensor systems[C]//Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. [S. l.]:IEEE,2013:1280-1286.
[20] LIU W,LI Z,MALEKIAN R,et al. A novel multi-feature based on-site calibration method for LiDAR-IMU system[J]. IEEE Transactions on Industrial Electronics,2019,67(11):9851-9861.
[21] CAMPOS C,ELVIRA R,RODRIGUEZ J. J G,et al. ORB-SLAM3:an accurate open-source library for visual,visual–inertial,and multimap SLAM[J]. IEEE Transactions on Robotics,2021,37(6):1874-1890.
[22] LIU Z,ZHANG F. BALM:bundle adjustment for lidar mapping[J]. IEEE Robotics and Automation Letters,2020,6(2):3184-3191.
[23] XU W,CAI Y X,HE D J,et al. FAST-LIO2:fast direct LiDAR-Inertial odometry[J]. IEEE Transaction on Robotics,2022,38(4):2053-2073.
[24] SHAN T X,ENGLOT B,RATTI C,et al. LVI-SAM:tightly-coupled lidar-visual-inertial odometry via smoothing and mapping[C]//Proceedings of the Proceedings IEEE International Conference on Robotics and Automation. Xi’an,China:IEEE,2021:5692-5698.
[25] XU X,ZHANG L,YANG J,et al. A review of multi-sensor fusion slam systems based on 3D LIDAR[J]. Remote Sensing,2022,14(12):2835.
[26] 万文辉,李宁,胡文敏,等. 基于联邦滤波进行立体相机/IMU/里程计运动平台组合导航定位[J]. 武汉大学学报(信息科学版),2018,43:101-106.
WAN W H,LI N,HU W M,et al. Mobile platform localization by integration of stereo cameras,IMU and wheel qdometer based on federated filter[J]. Geomatics and Information Science of Wuhan University,2018,43:101-106.
[27] ZHOU B,XIE D,CHEN S,et al. Comparative analysis of SLAM algorithms for mechanical LiDAR and solid-state LiDAR[J]. IEEE Sensors Journal,2023,23(5):5325-5338.