Research on Realistic 3D Modeling Technology of Lava Tube for Future Lunar Scientific Expedition

YANG Qiao1,2,3, KANG Zhizhong1,2,3, HU Teng1,2,3, YE Chenming1,2,3, LIU Dongming1,2,3

PDF(2421 KB)
PDF(2421 KB)
Journal of Deep Space Exploration ›› 2024, Vol. 11 ›› Issue (4) : 355-364. DOI: 10.15982/j.issn.2096-9287.2024.20230181

Research on Realistic 3D Modeling Technology of Lava Tube for Future Lunar Scientific Expedition

  • YANG Qiao1,2,3, KANG Zhizhong1,2,3, HU Teng1,2,3, YE Chenming1,2,3, LIU Dongming1,2,3
Author information +
History +

Abstract

This article proposed a 3D real scene modeling method for lava tubes that integrates airborne LiDAR, close-range photogrammetry, and point cloud data from GeoSLAM handheld laser scanner, with a focus on future lunar surface scientific explorations. Firstly, the entities were divided, and then entity feature extraction was performed based on semantic information. A new mesh model construction method was proposed, which uses multi-level model construction method and skeleton-plus-detail modeling method to construct the mesh model of the inner surface of the lava tube. Finally, entities were constructed separately between different layers inside the model to simulate the original state of different layers, and to measure layer thickness and volume of spallation. The 3D modeling of the lava tube located in Jingpo Lake, Heilongjiang province, shows that the 3D modeling method for lava tubes based on multi-source data fusion has high precision and high realism, providing an important reference for subsequent lunar lava tube skylight detection, Earth-Moon simulation comparison and internal exploration.

Keywords

3D reconstruction / airborne LiDAR / proximity photogrammetry / lava tube / GeoSLAM scanner

Cite this article

Download citation ▾
YANG Qiao, KANG Zhizhong, HU Teng, YE Chenming, LIU Dongming. Research on Realistic 3D Modeling Technology of Lava Tube for Future Lunar Scientific Expedition. Journal of Deep Space Exploration, 2024, 11(4): 355‒364 https://doi.org/10.15982/j.issn.2096-9287.2024.20230181

References

[1] HURWITZ D M,HEAD J W,HIESINGER H. Lunar sinuous rules:distribution,characteristics,and implications for their origin[J]. Planetary and Space Science,2013,79-80:1-38.
[2] 肖龙,黄俊,赵佳伟,等. 月面熔岩管洞穴探测的意义与初步设想[J]. 中国科学(物理学 力学 天文学),2018,48(11):86-99.
XIAO L,HUANG J,ZHAO J W,et al. Significance and preliminary proposal for exploring the lunar lava tubes[J]. SCIENTIA SINICA Physica,Mechanica & Astronomica,2018,48(11):86-99.
[3] BLAMONT J. A roadmap to cave dwelling on the Moon and Mars[J]. Advances in Space Research,2014,54(10):2140-2149.
[4] 董跃龙,穆海鑫,张丽傧,等. 海口石山火山群地质公园典型熔岩隧道调查研究:中国地质学会旅游地学与地质公园研究分会第34届年会暨福建龙岩地质公园建设与旅游发展研讨会[C]//中国福建龙岩:中国地质学会旅游地学与地质公园研究分会第34届年会暨福建龙岩地质公园建设与旅游发展研讨会,2019.
[5] CALVARI S,PINKERTON H. Formation of lava tubes and extensive flow field during the 1991-1993 eruption of Mount Etna[J]. Journal of Geophysical Research-Solid Earth,1998,103(B11):27291-27301.
[6] 陈洪洲,马宝君,高峰. 镜泊湖全新世火山喷发特征[J]. 中国地震,2005(3):360-368.
CHEN H Z,MA B J,GAO F. Characteristics of Holocene volcanic eruption in Jingpo Lake[J]. Earthquake Research in China,2005(3):360-368.
[7] 浦长龙,郭磊,詹涛. 地质雷达在镜泊湖世界地质公园熔岩隧道调查中的应用[J]. 工程地球物理学报,2015,12(1):117-121.
PU C L,GUO L,ZHAN T. Application of geological radar in lava tunnel survey in Jingpohu Global Geopark[J]. Chinese Journal of Engineering Geophysics,2015,12(1):117-121.
[8] 詹涛,张海燕,张俊,等. 镜泊湖世界地质公园熔岩隧道分布特征及成因[J]. 哈尔滨师范大学自然科学学报,2017,33(5):87-93.
ZHAN T,ZHANG H Y,ZHANG J,et al. Distribution characteristics and genesis of lava tunnels in Jingpohu Global Geopark[J]. Journal of Natural Science,Harbin Normal University,2017,33(5):87-93.
[9] 陈军,刘建军,田海波. 实景三维中国建设的基本定位与技术路[J]. 武汉大学学报(信息科学版),2022,47(10):1568-1575.
CHEN J,LIU J J,TIAN H B. The basic positioning and technical path of 3D China construction[J]. Journal of Wuhan University (Information Science Edition),2022,47(10):1568-1575.
[10] BLAIR D M,CHAPPAZ L,SOOD R,et al. The structural stability of lunar lava tubes[J]. Icarus,2017,282:47-55.
[11] 朱家松,张伟晔,于文率,等. 基于优视摄影测量的天-空-地协同实景三维构建方法[J]. 测绘通报,2023(S1):24-31.
ZHU J S,ZHANG W Y,YU W Z,et al. 3D construction method of space-space-ground collaborative reality based on UVISION Photogrammetry[J]. Bulletin of Surveying and Mapping,2023(S1):24-31.
[12] WONG K,ELLUL C. USER Requirements gathering for a national 3d mapping product in the united kingdom[C]//Proceedings of 13th 3D GeoInfo Conference. [S. l.]:13th 3D GeoInfo Conference, 2018.
[13] 包楠楠,樊轩呈,曲欣然. 实景三维在数字乡村智慧管理平台中应用[J]. 测绘通报,2023(S1):84-86.
BAO N N,FAN X C,QU X R. Application of real scene 3D in digital rural intelligent management platform[J]. Bulletin of Surveying and Mapping,2023(S1):84-86.
[14] MUSIALSKI P,WONKA P,ALIAGA D G,et al. A survey of urban reconstruction[J]. Computer Graphics Forum,2013,32(6):146-177.
[15] QI K,ZHANG J X,HUANG G M,et al. Technology on high-accuracy dem extraction from airborne interferometric sar:xxiv isprs congress:imaging today[C]//Proceedings of 24th ISPRS Congress on Imaging Today,Foreseeing Tomorrow. [S. l.]:24th ISPRS Congress on Imaging Today,Foreseeing Tomorrow,2022.
[16] 蔡军,江伟,温日强,等. 贴近摄影测量与BIM技术在濒危民族建筑部件级实景三维建设中的应[J]. 测绘通报,2022(12):19-23.
CAI J,JIANG W,WEN R Q,et al. Application of close photogrammetry and BIM Technology in 3D construction of building parts of endangered nationalities[J]. Bulletin of Surveying and Mapping,2022(12):19-23.
[17] LEE M J,PARK S Y. 3D Surface reconstruction from multi-view and multi-date google Earth satellite images with 3d homography-based projective reconstruction[C]//Proceedings of Xxiv Isprs Congress Imaging Today,Foreseeing Tomorrow,Commission Ii. [S. l.]:24th ISPRS Congress on Imaging Today,Foreseeing Tomorrow,2022.
[18] 朱庆,张利国,丁雨淋,等. 从实景三维建模到数字孪生建模[J]. 测绘学报,2022,51(6):1040-1049.
ZHU Q,ZHANG L G,DING Y L,et al. From 3D modeling to digital twin modeling[J]. Journal of Surveying and Mapping,202,51(6):1040-1049.
[19] ZHANG W M,QI J B,WAN P,et al. An easy-to-use airborne LiDAR data filtering method based on cloth simulation[J]. Remote Sensing,2016,8(6):1-10.
[20] KAZHDAN M,HOPPE H. Screened poisson surface reconstruction[J]. Acm Transactions on Graphics,2013,32(3):2-8.
[21] BERNARDINI F,MITTLEMAN J,RUSHMEIER H,et al. The ball-pivoting algorithm for surface reconstruction[J]. IEEE Transactions on Visualization and Computer GraphicS,1999,5(4):349-359.
PDF(2421 KB)

Accesses

Citations

Detail

Sections
Recommended

/