An Ultrasonic Drill for Lunar Lava Tube Drilling

DENG Naiwen1, HAN Guangchao1,2, WEN Guojun1, XIAO Long3,4, BAI Wei1,2

PDF(2755 KB)
PDF(2755 KB)
Journal of Deep Space Exploration ›› 2024, Vol. 11 ›› Issue (4) : 374-384. DOI: 10.15982/j.issn.2096-9287.2024.20230180

An Ultrasonic Drill for Lunar Lava Tube Drilling

  • DENG Naiwen1, HAN Guangchao1,2, WEN Guojun1, XIAO Long3,4, BAI Wei1,2
Author information +
History +

Abstract

In this paper, a helical groove conical composite horn structure with multi-point drive rotation was proposed. A high-performance ultrasonic driller suitable for drilling in the inner wall of lava tubes was developed. An equivalent impedance network model was used to model and analyze the ultrasonic driller to predict the response characteristics of ultrasonic driller. The possibility of this drilling probe in applying complex ground conditions of lava tubes was verified through low gravity multi-angle simulated drilling tests and data analysis. The results show that the drilling rate increases with the increase of the hole’s opening angle for a drill rod diameter of 3 mm and a drilling pressure of 10 N. The maximum unloaded rotary speed of the driller is 506 rad/min,the drilling rate is 6.4 mm/min for vertical drilling,and the rotary speed while drilling is 259 rad/min.

Keywords

lunar lava tubes / ultrasonic drilling / rotary impact ultrasound / equivalent impedance network modeling

Cite this article

Download citation ▾
DENG Naiwen, HAN Guangchao, WEN Guojun, XIAO Long, BAI Wei. An Ultrasonic Drill for Lunar Lava Tube Drilling. Journal of Deep Space Exploration, 2024, 11(4): 374‒384 https://doi.org/10.15982/j.issn.2096-9287.2024.20230180

References

[1] GREEN J. The geology of the lunar base[J]. Annals of the New York Academy of Sciences,1963,105(9):491-625.
[2] HALLIDAY W R. Terrestrial pseudokarst and the lunar topography[J]. Bulletin of the National Speleological Society,1966,28(4):167-170.
[3] HURWITZ D M,HEAD J W,HIESINGER H. Lunar sinuous rilles:distribution,characteristics,and implications for their origin[J]. Planetary and Space Science,2013,79:1-38.
[4] HARUYAMA J,HIOKI K,SHIRAO M,et al. Possible lunar lava tube skylight observed by SELENE cameras[J]. Geophysical Research Letters,2009,36(21):1-5.
[5] HARUYAMA J,MOROTA T,KOBAYASHI S,et al. Lunar holes and lava tubes as resources for lunar science and exploration[M]. Berlin,Heidelberg:Springer,2012:139-163.
[6] WAGNER R V,ROBINSON M S. Distribution,formation mechanisms,and significance of lunar pits[J]. Icarus,2014,237:52-60.
[7] 肖龙,黄俊,赵佳伟,等. 月面熔岩管洞穴探测的意义与初步设想[J]. 中国科学:物理学 力学 天文学,2018,48(11):119602.
XIAO L,HUANG J,ZHAO J W,et al. Significance and preliminary proposal for exploring the lunar lava tubes[J]. Scientia Sinica Physica,Mechanica & Astronomica,2018,48(11):119602.
[8] HORZ F. Lava tubes-potential shelters for habitats[C]//Proceedings of Lunar Bases and Space Activities of the 21st Century. [S. l.]:Lunar and Planetary Institute,1985:405-412.
[9] COOMBS C R,HAWKE B. A search for intact lava tubes on the Moon:Possible lunar base habitats[C]//Proceedings of The Second Conference on Lunar Bases and Space Activities of the 21st Century. [S. l.]:Johnson Space Center,1992:219-229.
[10] OPALKO J. Maria mitchell's haunting legacy[J]. Sky and Telescope,1992(83):505-506.
[11] LéVEILLé R J,DATTA S. Lava tubes and basaltic caves as astrobiological targets on Earth and Mars:a review[J]. Planetary and Space Science,2010,58(4):592-598.
[12] CHERKASOV I I,SHVAREV V V. New Soviet investigations of lunar soil and its analogs[J]. Soil Mechanics and Foundation Engineering,1977,14:320-326.
[13] CADOGAN P H,TURNER G. 40Ar—39ar dating of luna 16 and luna 20 samples[J]. Philosophical Transactions of the Royal Society of London. Series A,Mathematical and Physical Sciences,1977,284(1319):167-177.
[14] CADOGAN P H,TURNER G. Luna 16 and Luna 20 revisited[J]. Meteoritics,1975,10:375-376.
[15] TARASOV L S,IVANOV A V,STAKHEEV Y I. Luna 16 and the lunar soil[J]. Zemlia I Vselennaia,1970,6:2-3.
[16] ALLTON J H. Lunar samples:Apollo collection tools,curation handling,Surveyor III and Soviet luna samples:NASA-JSC-17994[R]. Washington:NASA,March 2009.
[17] ROEDDER E,WEIBLEN P W. High‐silica glass inclusions in olivine of Luna-24 samples[J]. Geophysical Research Letters,1977,4(10):485-488.
[18] BARBER D J. Electron microscopy of radiation damage and microstructure in soils from the Luna 24 core[C]// Proceedings of Mare Crisium:the View From Luna 24. New York:Pergamon Press,1978:195-206.
[19] JOHNSTON R S,HULL W E. Apollo missions[J]. Biomedical Results of Apollo,1975(368):9-40.
[20] BERRY R. Launch window and translunar,lunar orbit,and transearth trajectoryplanning and control for the Apollo 11 lunar landing mission[C]//Proceedings of The 8th Aerospace Sciences Meeting. New York:[s. n.],1970.
[21] ALLTON J H. Catalog of Apollo lunar surface geological sampling tools and containers:NASA 9-17900[R]. Houston:Johnson Space Center,1989.
[22] LOFGREN G E,HORZ F. Multiple Approaches to down sizing of the lunar sample return collection[C]//Proceedings of Lunar and Planetary Science Conference. Houston:[s. n.],2010.
[23] ZACNY K,DAVIS K,PAULSEN G,et al. Drill system development for the lunar subsurface exploration[J]. COSPAR Scientific Assembly,2008,37:3580.
[24] PANG Y,ZHANG T,WEI H Y,et al. Influence of lunar regolith compressibility on sampling performance of thick wall spiral drills[J]. Chinese Journal of Aeronautics,2023,36(2):350-362.
[25] XIMENES S W,ELLIOTT J O,BANNOVA O. Defining a mission architecture and technologies for lunar lava tube reconnaissance[C]//Proceedings of 13th ASCE Aerospace Division conference on engineering,construction,and operations in challenging environments and 5th NASA/ASCE workshop on granular materials in space exploration. California,USA:NASA,2012.
[26] BAR-COHEN Y,CHANG Z S,SHERRIT S,et al. The Ultrasonic/Sonic Driller/Corer (USDC) as a subsurface drill,sampler,and lab-on-a-drill for planetary exploration applications[C]//Proceedings of Smart Structures and Materials 2005:Industrial and Commercial Applications of Smart Structures Technologies. [S. l.]:SPIE,2005.
[27] SHERRIT S,BAO X Q,CHANG Z S,et al. Modeling of the ultrasonic/sonic driller/corer:USDC[C]//Proceedings of 2000 IEEE Ultrasonics Symposium. [S. l.]:IEEE,2000:691-694.
[28] BAR-COHEN Y,SHERRIT S,DOLGIN B P,et al. Ultrasonic/sonic driller/corer (USDC) as a sampler for planetary exploration[C]//Proceedings of 2001 IEEE Aerospace Conference Proceedings. [S. l.]:IEEE,2001,1:263-271.
[29] CHANG Z S,SHERRIT S,BAO X Q,et al. In situ rock probing using the ultrasonic/sonic driller/corer (USDC)[C]//Proceedings of Smart Structures and Materials 2003:Smart Structures and Integrated Systems. [S. l.]:SPIE,2003,5056:567-573.
[30] CHANG Z S,SHERRIT S,BAO X Q,et al. Design and analysis of ultrasonic horn for USDC (Ultrasonic/Sonic Driller/Corer)[C]//Proceedings of Smart Structures and Materials 2004:Industrial and Commercial Applications of Smart Structures Technologies. [S. l.]:SPIE,2004,5388:320-326.
[31] BAO X Q,BAR-COHEN Y,CHANG Z S,et al. Modeling and computer simulation of ultrasonic/sonic driller/corer (USDC)[J]. IEEE Transactions on Ultrasonics,Ferroelectrics,and Frequency Control,2003,50(9):1147-1160.
[32] HARKNESS P,LUCAS M,CARDONI A. Architectures for ultrasonic planetary sample retrieval tools[J]. Ultrasonics,2011,51(8):1026-1035.
[33] BADESCU M,KASSAB S,SHERRIT S,et al. Ultrasonic/Sonic Driller/Corer as a hammer-rotary drill[C]//Proceedings of Sensors and Smart Structures Technologies for Civil,Mechanical,and Aerospace Systems 2007. [S. l.]:SPIE,2007,6529:289-295.
[34] BADESCU M,SHERRIT S,BAO X Q,et al. Auto-Gopher:a wireline rotary-hammer ultrasonic drill[C]//Proceedings of Sensors and Smart Structures Technologies for Civil,Mechanical,and Aerospace Systems 2011. [S. l.]:SPIE,2011,7981:1098-1105.
[35] SHERRIT S,DOMM L,BAO X Q,et al. Single Piezo-actuator Rotary-Hammering (SPaRH) drill[C]//Proceedings of Sensors and Smart Structures Technologies for Civil,Mechanical,and Aerospace Systems 2012. [S. l.]:SPIE,2012,8345:598-608.
[36] WANG Y C,QUAN Q Q,YU H Y,et al. Rotary-percussive ultrasonic drill:An effective subsurface penetrating tool for minor planet exploration[J]. IEEE Access,2018,6:37796-37806.
[37] WANG Y C,QUAN Q Q,YU H Y,et al. Impact dynamics of a percussive system based on rotary-percussive ultrasonic drill[J]. Shock and Vibration,2017,2017:1-10.
[38] BAI D E,LI Y T,QUAN Q Q,et al. Development of a rotary-percussive ultrasonic drill using a bolt-clamped type piezoelectric actuator[J]. Advances in Space Research,2023,71(12):5360-5368.
[39] BAI D E,QUAN Q Q,WANG Y C,et al. A longitudinal & longitudinal-torsional vibration actuator for rotary-percussive ultrasonic planetary drills[J]. Advances in Space Research,2019,63(2):1065-1072.
[40] WANG T Z,QUAN Q Q,TANG D W,et al. Effect of hyperthermal cryogenic environments on the performance of piezoelectric transducer[J]. Applied Thermal Engineering,2021,193:116725.
[41] QUAN Q Q,WANG T Z,YU H Y,et al. An Ultrasonic drilling system for fast drilling speed with uncertain load[J]. IEEE/ASME Transactions on Mechatronics,2023,28:1477-1487.
PDF(2755 KB)

Accesses

Citations

Detail

Sections
Recommended

/