PDF(904 KB)
Topic: Autonomous Navigation and Control Technology for Landing and Ascending of Extraterrestrial Objects
Research Progress of Autonomous Navigation and Control Technology for Extraterrestrial Soft Landing
- HUANG Xiangyu1,2, XU Chao1,2, GUO Minwen1,2
Author information
+
1. Beijing Institute of Control Engineering, Beijing 100094, China;
2. National Key Laboratory of Space Intelligent Control, Beijing 100094, China
Show less
History
+
Received |
Revised |
Published |
01 Oct 2023 |
19 Jan 2024 |
26 Mar 2024 |
Issue Date |
|
26 Mar 2024 |
|
Abstract
Soft landing exploration is an important method for exploring extraterrestrial objects, and guidance, navigation and control (GNC) is the key to successful soft landing of extraterrestrial objects. Firstly, the development status of soft-landing missions of foreign and domestic celestial bodies such as Moon, Mars, and small celestial bodies was reviewed. On this basis, the typical GNC schemes for soft landing missions of extraterrestrial objects and the main progress of autonomous navigation and control technology were summarized. Finally, the key technologies for autonomous navigation and control that require special attention and development were proposed for future pinpoint soft-landing missions of extraterrestrial objects, in order to provide the experience and reference for future technological development.
Keywords
extraterrestrial soft landing /
autonomous navigation /
guidance and control /
research progress
Cite this article
Download citation ▾
HUANG Xiangyu, XU Chao, GUO Minwen.
Research Progress of Autonomous Navigation and Control Technology for Extraterrestrial Soft Landing. Journal of Deep Space Exploration, 2024, 11(1): 3‒15 https://doi.org/10.15982/j.issn.2096-9287.2024.20230178
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
This is a preview of subscription content, contact
us for subscripton.
References
[1] 张洪华,关轶峰,黄翔宇,等. 嫦娥三号着陆器动力下降的制导导航与控制[J]. 中国科学:技术科学,2014,44(4):377-384.
ZHANG H H,GUAN Y F,HUANG X Y,et al. Guidance navigation and control for Chang’E-3 powered descent[J]. Scientia Sinica Techologica,2014,44(4):377-384.
[2] 张洪华,梁俊,黄翔宇,等. 嫦娥三号自主避障软着陆控制技术[J]. 中国科学:技术科学,2014,44(6):559-568.
ZHANG H H,LIANG J,HUANG X Y,et al. Autonomous hazard avoidance control for Chang’E-3 soft landing[J]. Scientia Sinica Techologica,2014,44(6):559-568.
[3] 黄翔宇,张洪华,王大轶,等. “嫦娥三号”探测器软着陆自主导航与制导技术[J]. 深空探测学报(中英文),2014,1(1):52-59.
HUANG X Y,ZHANG H H,WANG D Y,et al. Autonomous Navigation and Guidance for Change-3 Soft Landing[J]. Journal of Deep Space Exploration,2014,1(1):52-59.
[4] 张洪华,关轶峰,程铭,等. 嫦娥四号着陆器制导导航与控制系统[J]. 中国科学:技术科学,2019,49(12):1418-1428.
ZHANG H H,GUAN Y F,CHENG M,et al. Guidance navigation and control for Chang’E-4 lander[J]. Sci Sin Tech,2019,49(12):1418-1428.
[5] 张洪华,李骥,于萍,等. 嫦娥五号月面起飞上升制导导航与控制技术[J]. 中国科学:技术科学,2021,51(8):921-937.
ZHANG H H,LI J,YU P,et al. Guidance navigation and control technology for the lunar ascent vehicle of the Chang’e-5 mission[J]. Scientia Sinica Techologica,2021,51(8):921-937.
[6] 于萍,张洪华,李骥,等. 嫦娥五号着陆上升组合体GNC系统设计与实现[J]. 中国科学:技术科学,2021,51(7):763-777.
YU P,ZHANG H H,LI J,et al. Design and implementation of GNC system of lander and ascender module of Chang’e-5 spacecraft[J]. Scientia Sinica Techologica,2021,51(7):763-777.
[7] HUANG X Y,LI M D,WANG X Y,et al. The Tianwen-1 Guidance,Navigation,and Control for Mars Entry,Descent,and Landing[J]. Space Science & Technology,2021(4):1-13.
[8] 赵宇,王晓磊,黄翔宇,等. 天问一号火星软着陆制导、导航与控制系统[J]. 空间控制技术与应用,2021.47(5):48-57.
ZHAO Y,WANG X L,HUANG X Y,et al. Tianwen-1 lander guidance navigation and control system for Mars soft landing[ J] . Aerospace Control and Application,2021,47(5) :48 - 57.
[9] GAVIN F M,LYNN E C. Entry guidance for the 2011 Mars Science Laboratory mission[C]//Proceedings of AIAA Atmospheric Flight Mechanics Conference. Portland,Oregon:AIAA,2011.
[10] HUANG X Y,XU C,HU J C,et al. Powered-descent landing GNC system design and flight results for Tianwen-1 mission[J]. Astrodynamics,2022,6(1):3-16.
[11] GUO M W,HUANG X Y,LI M D,et al. Adaptive entry guidance for the Tianwen-1 mission[J]. Astrodynamics,2022(6):17-26.
[12] JOHN O. Luna 9:the first soft landing on the Moon[J]. The Journal of Electronic Defense,2003(3):60-61.
[13] SAM W T. Surveyor spacecraft automatic landing system[C]//Proceedings of 27th Annual AAS Guidance and Control Conference. Breckenridge,Colorado:AAS,2004.
[14] DRAPER C S,WRIGLEY W,BATTIN R H,et al. Apollo guidance and navigation[J]. Space Navigation Guidance and Control,1965,1:1-22.
[15] NOZETTE S,LICHTENBERG C L,SPUDIS P,et al. The clementine bistatic radar experiment[J]. Science,1994,274:1495-1498.
[16] 吴伟仁,王大轶,宁晓琳. 深空探测器自主导航原理与技术[M]. 北京:中国宇航出版社,2011.
[17] 侯建文,阳光,满超,等. 深空探测:月球探测[M]. 北京:国防工业出版社,2016.
[18] ROBERT N I. Guidance and control system design of the Viking planetary lander[J]. Journal of Guidance and Control,1978,1(3):189-196.
[19] LEE B G,PORTER J D. Design and Implementation of Viking Mission[C]//Proceedings of AIAA 13th annual meeting and technical display incorporating the forum on the future of air transportation. Washington,D. C.:AIAA,1977.
[20] SAM W T,VINCENT M P. Guidance and navigation for the Mars Pathfinder mission[J]. Acta Astronautica,1995,35:545-554.
[21] JILL L P,PRASUN N D,ERIC M Q,et al. Entry,Descent,and Landing operations analysis for the Mars Phoenix lander[J]. Journal of Spacecraft and Rockets,2011,48(5):778-783.
[22] WAY D W. Preliminary assessment of the mars science laboratory entry,descent,and landing simulation[C]//Proceedings of 2013 IEEE Aerospace Conference. [S. l.]:IEEE,2013.
[23] MIGUEL S M,GAVIN F M,PAUL B B,et al. In-flight experience of the Mars Science Laboratory Guidance,Navigation,and Control system for Entry,Descent,and Landing[J]. CEAS Space Journal,2015,7:119-142.
[24] PAUL B,JORDI C,DAVID W W,et al. Mars 2020 perseverance EDL GNC safe target selection reconstruction:20230005646[R]. USA:Jet Propulsion Laboratory,National Aeronautics and Space Administration,2021.
[25] PAUL B. Mars 2020 perseverance Entry Descent and Landing Guidance Navigation and Control:20230005550[R]. USA:Jet Propulsion Laboratory,National Aeronautics and Space Administration,2021.
[26] ANDREW J,SETH A,JOHNNY C,et al. The lander vision system for Mars 2020 Entry Descent and Landing[C]//Proceedings of 2017 Annual Guidance and Control Conference. Breckenridge,CO:[s. n.],2017.
[27] TONI T N. EXOMARS 2016 - schiaparelli anomaly inquiry:DG-I/2017/546/TTN[R]. France:European Space Agency,2017.
[28] 大卫·M·哈兰德. 火星全书[M]. 郑永春,刘晗译. 北京:北京联合出版公司,2019.
[29] 侯建文,阳光,周杰,等. 深空探测:火星探测[M]. 北京:国防工业出版社,2016:38-427,736-537.
[30] ROBERT W F,DAVID W D,JIM V M. NEAR mission overview and trajectory design[C]//Proceedings of AAS/AIAA Astrodynamics Conference. Halifax,Nova Scotia:AIAA,1995.
[31] PROCKTER L,MURCHIE S,CHENG A. The NEAR shoemaker mission to asteriod 433 Eros[J]. Acta Astronautica,2002,51(1-9):491-500.
[32] JUN’ICHIRO K,KUNINORI U,AKIRA F. The MUSES-C mission for the sample and return—its technology development status and readiness[J]. Acta Astronautica,2003,52:117-123.
[33] ULAMECA S,ESPINASSEB S,FEUERBACHERA B,et al. Rosetta lander—philae:implications of an alternative mission[J]. Acta Astronautica 2006,58:435- 441.
[34] JONATHAN G E,ALLAN C. The OSIRIS-REx asteroid sample return:mission operations design[C]// Proceedings of SpaceOps 2014 Conference. Pasadena:[s. n.],2014.
[35] 侯建文,阳光,曹涛,等. 深空探测:小天体探测[M]. 北京:国防工业出版社,2016:52-228.
[36] 王大轶,黄翔宇,魏春岭. 基于光学成像测量的深空探测自主控制原理与技术[M]. 北京:中国宇航出版社,2012:1-32.
[37] ANDREW E J,JAMES F M. Overview of terrain relative navigation approaches for precise lunar landing[C]//Proceedings of 2008 IEEE Aerospace Conference. Big Sky,MT,USA:IEEE,2008.
[38] DEWEY A. Passive optical terrain relative navigation using APLNav[C]//Proceedings of 2008 IEEE Aerospace Conference. Big Sky,MT,USA:IEEE,2008.
[39] 吴伟仁,王大轶,李骥,等. 月球软着陆避障段定点着陆导航方法研究[J]. 中国科学:信息科学,2011,41(9):1054-1063.
WU W R,WANG D Y,LI J,et al. Research of the pinpoint landing navigation method in the hazard avoidance phase of lunar landing[J]. Scientia Sinica Informationis,2011,41(9):1054-1063.
[40] 张晓文,李骥,黄翔宇,等. 基于路标图像的天体定点着陆信息融合导航方法[J]. 空间控制技术与应用,2014,40(6):10-15.
ZHANG X W,LI J,HUANG X Y,et al. Information-fusion-integrated navigation for celestial body pinpoint landing based on landmark image[J]. Aerospace Control and Application,2014,40(6):10-15.
[41] 崔平远,冯军华,朱圣英,等. 基于三维地形匹配的月球软着陆导航方法研究[J]. 宇航学报,2011,32(3):470-476.
CUI P Y,FENG J H,ZHU S Y,et al. 3D terrain feature matching based navigation for lunar soft landing[J]. Journal of Astronautics,2011,32(3):470-476.
[42] OGAWA N,TERUI F,MIMASU Y,et al. Image-based autonomous navigation of Hayabusa2 using artificial landmarks:The design and brief in-flight results of the first landing on asteroid Ryugu[J]. Astrodynamics,2020,4:89-103.
[43] WILLIAMS B,ANTREASIAN P,CARRANZA E,et al. OSIRIS-REx flight dynamics and navigation design[J]. Space Science Reviews,2018,214:1-43.
[44] 秦永元. 惯性导航[M]. 北京:科学出版社,2014:56-120.
[45] 王大轶,黄翔宇,关轶峰,等. 基于IMU配以测量修正的月球软着陆自主导航研究[J]. 宇航学报,2007,28(6):1544-1549.
WANG D Y,HUANG X Y,GUAN Y F,et al. Research on the autonomous navigation based on measurement-updated imu for lunar soft landing[J]. Journal of Astronautics,2007,28(6):1544-1549.
[46] 张洪华,李骥,关轶峰,等. 嫦娥三号着陆器动力下降的自主导航[J]. 控制理论与应用,2014,31(12):1686-1694.
ZHANG H H,LI J,GUAN Y F,et al. Autonomous navigation for powered descent phase of Chang’E-3 lunar lander[J]. Control Theory and Technology,2014,31(12):1686-1694.
[47] 李茂登,黄翔宇,徐超,等. 天问一号火星探测器EDL过程自主导航技术[J]. 宇航学报,2022,43(1):11-19.
LI M D,HUANG X Y,XU C,et al. Autonomous navigation technology of Tianwen-1 Mars probe during EDL process[J]. Journal of Astronautics,2022,43(1):11-20.
[48] MILLER J K,CHENG Y. Autonomous landmark tracking orbit determination strategy[C]//Proceedings of AAS/AIAA Astrodynamics Specialist Conference. Big Sky,MT,USA:AAS/AIAA,2003 .
[49] CHENG Y,MILLER J K. Autonomous landmark based spacecraft navigation system:AAS 03-223[R]. USA:NASA Technical Recport,2003.
[50] KUBOTAA T,HASHIMOTOA T,SAWAI S,et al. An autonomous navigation and guidance system for MUSES-C asteroid landing[J]. Acta Astronautica,2003,52:125-131.
[51] RYAN O,ALEXANDER M,COURTNEY M,et al. The application of optical based feature tracking to OSIRIS-Rex asteroid sample collection[C]//Proceedings of AAS Guidance,Navigation,and Control Conference. [S. l.]:AAS,2015.
[52] CHENG Y,GOGUEN J,JOHNSON A. The Mars Exploration Rovers Descent Image Motion Estimation System[J]. IEEE Intelligent Systems,2004,19(3):13-21.
[53] 王大轶,李骥,黄翔宇,等. 月球软着陆过程高精度自主导航避障方法[J]. 深空探测学报(中英文),2014,l(1):44-51.
WANG D Y,LI J,HUANG X Y,et al. A pinpoint autonomous for navigation and hazard avoidance method lunar soft landing[J]. Journal of Deep Space Exploration,2014,1(1):44-51.
[54] 华宝成,李涛,刘洋,等. 天问一号着陆器双目视觉避障技术[J]. 宇航学报,2022,43(1):56-63.
HUA B C,LI T,LIU Y,et al. Evaluation for stereo vision hazard avoidance technology of Tianwen 1 lander[J]. Journal of Astronautics,2022,43(1):56-63.
[55] 刘旺旺,李茂登,李涛,等. 天问一号探测器火星着陆自主避障技术设计与验证[J]. 宇航学报,2022,43(1):46-55.
LIU W W,LI M D,LI T,et al. Design and qualification of hazard detection and avoidance system for Tianwen 1 Mars landing mission[J]. Journal of Astronautics,2022,43(1):46-55.
[56] JOHNSON A E,AARON S B,ANSARI H,et al. Mars 2020 lander vision system flight performance[C]//Proceedings of AIAA SciTech 2022 Forum,San Diego,CA:AIAA,2022.
[57] GRAVES C A,HARPOLD J C. Shuttle entry guidance[C]//Proceedings of AAS 25th Anniversary Conference. Houston,Texas:AAS,1978.
[58] 赵汉元. 飞行器再入动力学和制导[M]. 长沙:国防科技大学出版社,1997.
[59] 胡军. 载人飞船全系数自适应再入升力控制[J]. 宇航学报,1998,19(1):8-12.
HU J. All coefficients adaptive reentry lifting control of manned spacecraft[J]. Journal of Astronautics,1998,19(1):8-12.
[60] 胡军,张钊. 载人登月飞行器高速返回再入制导技术研究[J]. 控制理论与应用,2014,31(12):1678-1685.
HU J,ZHANG Z. A study on the reentry guidance for a manned lunar return vehicle[J]. Control Theory and Technology,2014,31(12):1678-1685.
[61] LU P. Augmented Apollo powered descent guidance[J]. Journal of Guidance,Control,and Dynamics,2019,42(3):447-457.
[62] SOSTARIC R,REA J. Powered descent guidance methods for the Moon and Mars[C]//Proceedings of AIAA Guidance,Navigation,and Control Conference and Exhibit. [S. l]:AIAA,2007.
[63] KLUMPP A R. Apollo Lunar descent guidance[J]. Automatica,1974,10(2):133-146.
[64] D’SOUZA C S. An Optimal guidance law for planetary landing[C]//Proceedings of Guidance,Navigation,and Control Conference. [S. l]:AIAA,1997.
[65] MCHENRY R L,BRAND T J,LONG A D,et al. Space shuttle ascent guidance,navigation,and control[J]. The Journal of the Astronautical Science,1979,27(1):1-38.
[66] SAGLIANO M,MOOIJ E. Optimal drag-energy entry guidance via pseudospectral convex optimization[J]. Aerospace Science and Technology,2021,117:1-16.
[67] JOHNSON M C. A Parameterized approach to the design of lunar lander attitude controllers[C]//Proceedings of AIAA Guidance,Navigation,and Control Conference and Exhibit. Keystone,Colorado:AIAA,2006.
[68] BRUGAROLAS P B,MARTIN A M S,WONG W C. Entry attitude controller for the Mars science laboratory[C]//Proceedings of 2007 IEEE aerospace conference. Big Sky,MT,USA:IEEE,2007.
[69] 张洪华,关轶峰,胡锦昌,等. 分区四元数姿态控制[J]. 自动化学报,2015,41(7):1341-1349.
ZHANG H H,GUAN Y F,HU J C,et al. A novel attitude control strategy based on quaternion partition[J]. ACTA AUTOMATICA SINICA,2015,41(7):1341-1349.
[70] ZHANG H H,LI J,WANG Z G,et al. Guidance navigation and control for Chang’E-5 powered descent[J]. Space:Science & Technology,2021,2021:9823609.
[71] HU J C,HUANG X Y,LI M D,et al. Entry vehicle control system design for the Tianwen-1 mission[J]. Astrodynamics,2022(6):27-37.
[72] 杨嘉墀. 航天器轨道动力学与控制(下)[M]. 北京:宇航出版社,2001.
[73] 崔平远,龙嘉腾,朱圣英,等. 行星着陆轨迹优化技术研究进展[J]. 宇航学报,2021,42(6):677-686.
CUI P Y,LONG J T,ZHU S Y,et al. Research progress of planetary landing trajectory optimization techniques[J]. Journal of Astronautics,2021,42(6):677-686.
[74] 崔平远,陆晓萱,朱圣英,等. 小天体柔性附着状态协同估计方法[J]. 宇航学报,2022,43(9):1219-126.
CUI P Y,LU X X,ZHU S Y,et al. Cooperative state estimation method for small celestial body flexible landing[J]. Journal of Astronautics,2022,43(9):1219-126.
[75] 沈毅,李利亮,王振华. 航天器故障诊断与容错控制技术研究综述[J]. 宇航学报,2020,41(6):647-656.
SHEN Y,LI L L,WANG Z H. A Review of fault diagnosis and fault tolerant control techniques for spacecraft[J]. Journal of Astronautics,2020,41(6):647-656.