Analysis and Suppression Methods of High Temperature Problems in the Throat of Orbit Controlled Engine

LI Jianrui1,2, SU Hang1,2, LIU Changguo1,2, CHEN Hongyu1,2, YE Yixiang1,2

PDF(2050 KB)
PDF(2050 KB)
Journal of Deep Space Exploration ›› 2024, Vol. 11 ›› Issue (2) : 132-140. DOI: 10.15982/j.issn.2096-9287.2024.20230154

Analysis and Suppression Methods of High Temperature Problems in the Throat of Orbit Controlled Engine

  • LI Jianrui1,2, SU Hang1,2, LIU Changguo1,2, CHEN Hongyu1,2, YE Yixiang1,2
Author information +
History +

Abstract

Based on the phenomenon of single-side local high temperature of throat and high jump of weld temperature during steady-state test ignition of the engine. which seriously endangers the reliability of the engine,CFD simulation was used to model the structure of the head injector and optimize the distribution structure in the flow channel combined with the flow resistance mathematical model. To achieve the reduction of jet flow resistance and improve the non-uniformity of flow caused by impact,and optimize the combustion structure and liquid film cooling scheme in the side zone by adjusting the impact parameters,optimize the mixing ratio in the side zone,and reduce the throat temperature and circumferential temperature difference. The improved engine has been verified by experiments. Under the condition of unchanged performance,the temperature of the high-altitude simulated thermal test throat was reduced from nearly 1 500 ℃ to 1 270 ℃,the temperature at the headbody weld was reduced from 520 ℃ to 310 ℃,and the temperature difference of the engine body was controlled within 50 ℃,which effectively solved the problem of high temperature in the engine throat. The service life and reliability of the engine were improved.

Keywords

liquid rocket engine / bipropellant engine / high body temperature / reliability

Cite this article

Download citation ▾
LI Jianrui, SU Hang, LIU Changguo, CHEN Hongyu, YE Yixiang. Analysis and Suppression Methods of High Temperature Problems in the Throat of Orbit Controlled Engine. Journal of Deep Space Exploration, 2024, 11(2): 132‒140 https://doi.org/10.15982/j.issn.2096-9287.2024.20230154

References

[1] Q/Fc0928-2013 高室压双元发动机喷注器设计规范[S]. 上海:上海空间推进研究所,2013
[2] 王治军,常新龙,田干,等. 液体火箭发动机推力室设计[M]. 北京:国防工业出版社,2014.
WANG Z J,CHANG X L,TIAN G,et al. Design for thrust chamber of liquid propellant rocket engines[J]. Beijing:National Defense Industrial Press,2014.
[3] 杨立军,富庆飞. 液体火箭发动机推力室设计[M]. 北京:北京航空航天大学出版社,2013.
[4] 蔡国飙,李家文,田爱梅,等. 液体火箭发动机设计[M]. 北京:北京航空航天大学出版社,2011.
[5] 杨成虎,林庆国,刘昌国. 高性能液体远地点发动机技术发展[J]. 火箭推进,2013,39(4):1-7,40.
YANG C H,LIN Q G,LIU C G. Technology development of high-performance liquid apogee engine[J]. Journal of Rocket Propulsion,2013,39(4):1-7,40.
[6] STECHMAN R C. Film cooling of small rocket engines[R]. Northridge:California State University,1968-264.
[7] 唐亮,王凯,刘计武,等. 液膜冷却对火箭发动机燃烧效率的影响[J]. 火箭推进,2023,49(3):69-75.
TANG L,WANG K,LIU J W,et al. Influence of liquid film cooling on combustion efficiency of rocket engine[J]. Journal of Rocket Propulsion,2023,49(3):69-75.
[8] 王慧君. 液体射流撞壁液膜铺展演变特征研究[D]. 上海:华东理工大学,2023.
WANG H J. Study on spreading and development characteristics of liquid film by liquid jet impingement[D]. Shanghai:East China University of Science and Technology,2023.
[9] GATER R A,L'ECUYER M R. A fundamental investigation of the phenomena that characterize liquid-film cooling[J]. International Journal of Heat and Mass Transfer,1970,13(12):1925-1928.
[10] KNUTH E L. The mechanics of film cooling[D]. California:California Institute of Technology,1954.
[11] HOEHN F W,RUPE J H,SCOTTER J G. Liquid-phase mixing of bipropellant doublets:JPL-TR-32-1546[R]. Pasadena:JPL,1972.
[12] 朱宁昌,刘国球. 液体火箭发动机设计[J]. 北京:宇航出版社,1994
[13] SUTTON P G,BIBLARZ O. 火箭发动机基础[M]. 第七版,北京:科学出版社,2003.
[14] 孙宏明. 直流式喷注器设计[J]. 火箭推进,2004,30(5):1-9.
SUN H M. Design of orifice injector[J]. Journal of Rocket Propulsion,2004,30(5):1-9.
[15] 李子阳,李家春,刘忠. 直流互击式喷注器的实验与数值研究[J]. 导弹与航天运载技术. 2018 (3):36-40,41.
LI Z Y,LI J C,LIU Z. Experimental investigation and numerical simulation of DC interaction injection[J]. Missiles and Space Vehicles,2018 (3):36-40,41.
[16] 李子阳. 火箭喷注器的流体特性研究及结构优化[D]. 贵阳:贵州大学,2018.
[17] 孙冰,张建伟. 火箭发动机热防护技术[M]. 北京:北京航空航天大学出版社,2016.
[18] 李平,王衍方. 双组元姿控发动机液膜冷却对性能的影响分析[J]. 火箭推进,1995:1-8.
[19] 刘昌国,施浙杭,陈泓宇,等. 星用 490 N 发动机偏工况工作特性试验[J]. 航空动力学报,2022,37(12):2771-2781.
LIU C G,SHI Z H,CHEN H Y,et al. Test on working characteristic of 490N engine for satellites under off-rated condition[J]. Journal of Aerospace Power,2022,37(12):2771-2781.
[20] 潘兆义,赵青芮,王国强,等. 铌铪合金表面硅化物涂层的高温失效行为分析[J]. 火箭推进,2019,45(2):66-73.
PAN Z Y,ZHAO Q R,WANG G Q,et al. Failure behaviour analysis of silicide coating on Nb-Hf alloy[J]. Journal of Rocket Propulsion,2019,45(2):66-73.
[21] COULBERT C D. Selecting cooling techniques for liquid rockets for spacecraft[J]. Journal of Spacecraft and Rockets,1964,1:11.
[22] ROSENBERG S D,SCHOENMAN L. High performance bipropellant engines for orbit transfer and attitude control propulsion:IAF-91-249[R]. USA:NASA,1991.
[23] 张国栋,罗宇翔,李龙飞,等. 热态壁面条件下的液膜冷却实验与仿真[J]. 西安交通大学学报,2024,58(1):108-118.
ZHANG G D,LUO Y X,LI L F,et al. Experiment and numerical study on liquid film based on heated wall condition[J]. Journal of Xi’an Jiaotong University,2024,58(1):108-118.
[24] 张宏伟,陶文铨,何雅玲,等. 液体火箭发动机燃烧室液膜冷却数值研究[J]. 西安交通大学学报,2006,40(7):748-752.
ZHANG H W,TAO W Q,HE Y L,et al. Numerical study of liquid film cooling in combustion chamber of liquid rocket engine[J]. Journal of Xi’an Jiaotong University,2006,40(7):748-752.
[25] 林庆国. 空间轨控发动机高效燃烧室仿真与试验研究[D]. 长沙:国防科学技术大学,2015.
LIN Q G. Simulation and experiment research on the high efficient combustion chamber for space orbit maneuvering rocket engine[D]. Changsha:National University of Defense Technology,2015.
[26] 周红玲,杨成虎,刘犇. 液体火箭发动机液膜冷却研究综述[J]. 载人航天,2012,18(4):8-13.
ZHOU H L,YANG C H,LIU B. Review of research on liquid film cooling for liquid-propellant rocket engine[J]. Manned Spaceflight,2012,18(4):8-13.
[27] TOLUBINSKII V I,ANTONENKO V A,OSTROVSKII Y N. Effect of state of heat-transfer surface on rupture of thin films of boiling liquid[J]. Journal of Engineering Physics and Thermophysics,1977,32:628-630.
[28] 俞肇铭. R-4D 双组元姿控发动机的研制(一)喷注器设计[J]. 现代防御技术,1982,53:22-53.
PDF(2050 KB)

Accesses

Citations

Detail

Sections
Recommended

/