3D Detection of Extraterrestrial Lava Tunnels Based on Lightweight Mobile Measurement System and Surface Verification on Earth

ZHAO Xin1, LIANG Fuxun2, LI Jianping2, Chen Yiping3, Yang Bisheng2

PDF(2950 KB)
PDF(2950 KB)
Journal of Deep Space Exploration ›› 2024, Vol. 11 ›› Issue (4) : 385-393. DOI: 10.15982/j.issn.2096-9287.2024.20230143

3D Detection of Extraterrestrial Lava Tunnels Based on Lightweight Mobile Measurement System and Surface Verification on Earth

  • ZHAO Xin1, LIANG Fuxun2, LI Jianping2, Chen Yiping3, Yang Bisheng2
Author information +
History +

Abstract

Lava tunnels widely exist on planets and satellites, which can provide natural shelter for humans to land on in the future. Research on lava tunnels is of great significance. However, there are many challenges in extraterrestrial lava tunnel detection. Existing terrestrial lava tunnel detection schemes have devices that are not portable, with low levels of automation and work efficiency, and cannot be directly applied to the detection of extraterrestrial lava tunnels. To address the above problems, this paper proposes a 3D detection method for extraterrestrial lava tunnels based on the lightweight mobile measurement system, achieving efficient and detailed mapping as well as 3D morphology of lava tunnels, and carries out the verification in Earth lava tunnels. First, laser scanning is used to obtain the point cloud in the lava tunnel efficiently, and the 3D point cloud map of the tunnel is generated based on the iterative Kalman filtering algorithm. Subsequently, through point cloud processing methods such as ground filtering, tunnel wall extraction, and normal vector estimation, the 3D reconstruction of lava tunnels is achieved, followed by morphological analysis. This paper selects the Xianren Cave and Qishier Cave in Haikou, Hainan Province, as simulation scenarios for extraterrestrial lava tunnels to conduct experiments. Experiments indicate that the proposed method realizes real-time autonomous 3D mapping of lava tunnels. The generated point cloud maps and 3D models are more accurate and contain more detailed terrain information compared to existing research results. These indicate the proposed method better meets the morphological analysis needs of lava tunnels and provides a foundation for the in-depth study of extraterrestrial lava tunnels.

Keywords

lava tunnel / lightweight mobile measurement system / laser point cloud / 3D modeling / morphological analysis

Cite this article

Download citation ▾
ZHAO Xin, LIANG Fuxun, LI Jianping, Chen Yiping, Yang Bisheng. 3D Detection of Extraterrestrial Lava Tunnels Based on Lightweight Mobile Measurement System and Surface Verification on Earth. Journal of Deep Space Exploration, 2024, 11(4): 385‒393 https://doi.org/10.15982/j.issn.2096-9287.2024.20230143

References

[1] 栾恩杰. 特约稿:探索浩瀚宇宙建设航天强国——纪念中国深空探测12周年[J]. 深空探测学报(中英文),2016,3(4):295-306.
LUAN E J. The rising China space heading for the endless universe[J]. Journal of Deep Space Exploration,2016,3(4):295-306.
[2] 王赤,张贤国,徐欣锋,等. 中国月球及深空空间环境探测[J]. 深空探测学报(中英文),2019,6(2):105-118.
WANG C,ZHANG X G,XU X F,et al. The lunar and deep space environment exploration in China[J]. Journal of Deep Space Exploration,2019,6(2):105-118.
[3] 董光亮,李海涛,郝万宏,等. 中国深空测控系统建设与技术发展[J]. 深空探测学报(中英文),2018,5(2):99-114.
DONG G L,LI H T,HAO W H,et al. Development and future of China’s deep space TT&C system[J]. Journal of Deep Space Exploration,2018,5(2):99-114.
[4] 于登云,吴学英,吴伟仁. 我国探月工程技术发展综述[J]. 深空探测学报(中英文),2016,3(4):307-314.
YU D Y,WU X Y,WU W R. Review of technology development for Chinese lunar exploration program[J]. Journal of Deep Space Exploration,2016,3(4):307-314.
[5] 叶培建,于登云,孙泽洲,等. 中国月球探测器的成就与展望[J]. 深空探测学报(中英文),2016,3(4):323-333.
YE P J,YU D Y,SUN Z Z,et al. Achievements and prospect of Chinese lunar probes[J]. Journal of Deep Space Exploration,2016,3(4):323-333.
[6] 于登云,孙泽洲,孟林智,等. 火星探测发展历程与未来展望[J]. 深空探测学报(中英文),2016,3(2):108-113.
YU D Y,SUN Z Z,MENG L Z,et al. The development process and prospects for Mars exploration[J]. Journal of Deep Space Exploration,2016,3(2):108-113.
[7] 李春来,刘建军,耿言,等. 中国首次火星探测任务科学目标与有效载荷配置[J]. 深空探测学报(中英文),2018,5(5):406-413.
LI C L,LIU J J,GENG Y,et al. Scientific objectives and payload configuration of China’s first Mars exploration mission[J]. Journal of Deep Space Exploration,2018,5(5):406-413.
[8] HARUYAMA J,SAWAI S,MIZUNO T,et al. Exploration of lunar holes,possible skylights of underlying lava tubes,by smart lander for investigating moon (slim)[J]. Transactions of The Japan Society for Aeronautical and Space Sciences,Aerospace Technology Japan,2012,10(ists28):Pk_7-Pk_10.
[9] 肖龙,黄俊,赵佳伟,等. 月面熔岩管洞穴探测的意义与初步设想[J]. 中国科学:物理学 力学 天文学,2018,48(11):87-100.
XIAO L,HUANG J,ZHAO J W,et al. Significance and preliminary proposal for exploring the lunar lava tubes (in Chinese). Sci Sin-Phys Mech Astron,2018,48(11):87-100.
[10] 周昶宇,周米玉,徐聿升,等. 月面形貌勘察重建及其在熔岩管探测中的应用与展望[J]. 前瞻科技,2024,3(1):34-48.
ZHOU C Y,ZHOU M Y,XU Y S,et al. Lunar topographic survey and reconstruction and its application in lava tube exploration[J]. Science and Technology Foresight,2024,3(1):34-48.
[11] LÉVEILLÉ R J,DATTA S. Lava tubes and basaltic caves as astrobiological targets on Earth and Mars:a review[J]. Planetary and Space Science,2010,58(4):592-598.
[12] BILLS B G,FERRARI A J. A lunar density model consistent with topographic,gravitational,librational,and seismic data[J]. Journal of Geophysical Research,1977,82(8):1306-1314.
[13] CHAPPAZ L,SOOD R,MELOSH H J,等. Evidence of large empty lava tubes on the Moon using GRAIL gravity[J]. Geophysical Research Letters,2017,44(1):105-112.
[14] KAKU T,HARUYAMA J,MIYAKE W,等. Detection of intact lava tubes at Marius Hills on the Moon by SELENE (Kaguya) Lunar Radar Sounder[J]. Geophysical Research Letters,2017,44(20):10155-10161.
[15] CARRER L,GEREKOS C,BRUZZONE L. A multi-frequency radar sounder for lava tubes detection on the Moon:design,performance assessment and simulations[J]. Planetary and Space Science,2018,152:1-17.
[16] 耿言,周继时,李莎,等. 我国首次火星探测任务[J]. 深空探测学报(中英文),2018,5(5):399-405.
GENG Y,ZHOU J S,LI S,et al. A Brief introduction of the first Mars exploration mission in China[J]. Journal of Deep Space Exploration,2018,5(5):399-405.
[17] 段政,邢光福,朱祥坤,等. 2023琼北地区第四纪熔岩隧道群研究:形态学及其比较行星学意义[J]. 岩石学报,2023,39(8):2347-2364.
DUAN Z,XING G F,ZHU X K,et al. Quaternary lava tubes in northern Hainan Island: morphology and significance of comparative planetology[J]. Acta Petrologica Sinica,2023,39(8):2347-2364.
[18] 董跃龙. 海口石山火山群典型熔岩隧道调查研究[D]. 北京:中国地质科学院,2021.
DONG Y L. Investigation on typical lava tunnels of Shishan Volcanic Group in Haikou[D]. Beijing:Chinese Academy of Geological Sciences,2021.
[19] SANTAGATA T,SAURO F,MASSIRONI M,et al. Subsurface laser scanning and photogrammetry in the Corona lava tube system[C]//EGU General Assembly Conference Abstracts. Lanzarote,Spain:[s. n.],2018:5290.
[20] 浦长龙,郭磊,詹涛. 地质雷达在镜泊湖世界地质公园熔岩隧道调查中的应用[J]. 工程地球物理学报,2015,12(1):117-121.
PU C L,GUO L,ZHAN T. The application of ground penetrating radar to lava tunnel survey of the lake Jingpo-world geological park[J]. Chinese Journal of Engineering Geophysics,2015,12(1):117-121.
[21] MIYAMOTO H,HARUYAMA J,ROKUGAWA S,et al. Acquisition of ground penetrating radar data to detect lava tubes:preliminary results on the Komoriana cave at Fuji volcano in Japan[J]. Bulletin of Engineering Geology and the Environment,2003,62:281-288.
[22] LI J,WU W,YANG B,et al. WHU-Helmet:a helmet-based multi-sensor SLAM dataset for the evaluation of real-time 3D mapping in large-scale GNSS-denied environments[J]. IEEE Transactions on Geoscience and Remote Sensing,2023,61:1-16.
[23] YANG B,LIANG F,HUANG R. Progress,challenges and perspectives of 3D LiDAR point cloud processing[J]. Acta Geodaetica et Cartographica Sinica,2017,46(10):1509.
[24] LI J,YANG B,CHEN Y,et al. Evaluation of a compact helmet-based laser scanning system for aboveground and underground 3D mapping[J]. The International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences,2022,43:215-220.
[25] LI J,YANG B,CHEN C,et al. NRLI-UAV:non-rigid registration of sequential raw laser scans and images for low-cost UAV LiDAR point cloud quality improvement[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2019,158:123-145.
[26] LI J,YANG B,YANG Y,et al. Real-time automated forest field inventory using a compact low-cost helmet-based laser scanning system[J]. International Journal of Applied Earth Observation and Geoinformation,2023,118:103299.
[27] QIN T,LI P,SHEN S. Vins-mono:a robust and versatile monocular visual-inertial state estimator[J]. IEEE Transactions on Robotics,2018,34(4):1004-1020.
[28] ZHANG J,SINGH S. LOAM:lidar odometry and mapping in real-time[J]. Robotics:Science and Systems,2014,2(9):1-9.
[29] XU W,CAI Y,HE D,et al. Fast-lio2:fast direct lidar-inertial odometry[J]. IEEE Transactions on Robotics,2022,38(4):2053-2073.
[30] RUSU R B. Semantic 3D object maps for everyday manipulation in human living environments[J]. Künstl Intell,2010,24:345-348.
[31] ZHANG W,QI J,WAN P,et al. An easy-to-use airborne LiDAR data filtering method based on cloth simulation[J]. Remote Sensing,2016,8(6):501.
[32] DONG Z,YANG B,LIU Y,et al. A novel binary shape context for 3D local surface description[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2017,130:431-452.
[33] AU O,TAI C,CHU H,et al. Skeleton extraction by mesh contraction[J]. ACM transactions on graphics (TOG),2008,27(3):1-10.
PDF(2950 KB)

Accesses

Citations

Detail

Sections
Recommended

/