Analog Study of Ground-Penetrating Radar Technology for Lava Tube Detection

XU Yi1, CHEN Rui1, WONG Honkuan1, MENG Xindong1, CHEN Yiping2, ZHANG Ling1,3, ZHANG Jun4, XIAO Long4

PDF(2586 KB)
PDF(2586 KB)
Journal of Deep Space Exploration ›› 2024, Vol. 11 ›› Issue (4) : 365-373. DOI: 10.15982/j.issn.2096-9287.2024.20230138
Topic: Lava Tubes Exploration in Solar System

Analog Study of Ground-Penetrating Radar Technology for Lava Tube Detection

  • XU Yi1, CHEN Rui1, WONG Honkuan1, MENG Xindong1, CHEN Yiping2, ZHANG Ling1,3, ZHANG Jun4, XIAO Long4
Author information +
History +

Abstract

Lava tubes are one of the prime candidates for establishing extraterrestrial bases. To verify the feasibility of using ground-penetrating radar to detect lava tubes on extraterrestrial bodies, this paper first conducted a technical study to validate the detection of lava tubes using a 400 MHz ground-penetrating radar system on the Seventy-Two Caves and Wolong Cave in the Shishan Volcanic Group in Haikou, Hainan. It is found that the upper interface of the lava tube is clearly displayed when the depth of the tube is 2 m, and the radar image shows the upper and lower boundaries when the height is less than 3 meters. Additionally, the genetic algorithm is employed to inverse the dielectric constant of the lava tube’s wall. The reliability of the genetic algorithm in calculating the dielectric constant is validated through comparison with results obtained from the depth method and sample measurement. Furthermore, the analysis of samples establishes a simple relationship between porosity and dielectric constant. These findings are of significant importance for assessing the underground spatial distribution and wall stability of the lava tubes, providing a reference for future lunar base establishment.

Keywords

lava tube / ground penetrating radar / Moon / in-situ detection / analog study

Cite this article

Download citation ▾
XU Yi, CHEN Rui, WONG Honkuan, MENG Xindong, CHEN Yiping, ZHANG Ling, ZHANG Jun, XIAO Long. Analog Study of Ground-Penetrating Radar Technology for Lava Tube Detection. Journal of Deep Space Exploration, 2024, 11(4): 365‒373 https://doi.org/10.15982/j.issn.2096-9287.2024.20230138

References

[1] LIN X U,YONGLIAO Z O U,YINGZHUO J I A. China’s planning for deep space exploration and lunar exploration before 2030[J]. Chinese Journal of Space Science,2018,38(5):591-592.
[2] KESSLER P,PRATER T,NICKENS T,et al. Artemis deep space habitation:enabling a sustained human presence on the Moon and beyond[C]//Proceedings of the 2022 IEEE Aerospace Conference (AERO). [S. l.]:IEEE,2022.
[3] HORVATH T,HAYNE P O,PAIGE D A. Thermal and illumination environments of lunar pits and caves:models and observations from the diviner lunar radiometer experiment[J]. Geophysical Research Letters,2022,49(14):e2022GL099710.
[4] HORZ F. Lava tubes-potential shelters for habitats[C]//Proceedings of the Lunar Bases and Space Activities of the 21st CENtury. 1985:405-412,Houston,USA,Lunar and Planetary Institute.
[5] 肖龙,黄俊,赵佳伟,等. 月面熔岩管洞穴探测的意义与初步设想 [J]. 中国科学:物理学,力学,天文学,2018,48(11):86-99.
XIAO L,HUANG J,ZHAO J W,et al. Significance and preliminary proposal for exploring the lunar lava tubes[J]. SCIENTIA SINICA Physica,Mechanica & Astronomica,2018,48(11):86-99.
[6] KESZTHELYI L. A preliminary thermal budget for lava tubes on the Earth and planets[J]. Journal of Geophysical Research:Solid Earth,1995,100(B10):20411-20420.
[7] CRUIKSHANK D,WOOD C. Lunar rilles and Hawaiian volcanic features:possible analogues[J]. The Moon,1972,3(4):412-447.
[8] LéVEILLé R J,DATTA S. Lava tubes and basaltic caves as astrobiological targets on Earth and Mars:a review[J]. Planetary and Space Science,2010,58(4):592-598.
[9] COOMBS C R,HAWKE B. A search for intact lava tubes on the Moon:possible lunar base habitats[C]//Proceedings of the Second Conference on Lunar Bases and Space Activities of the 21st Century. [S. l.]:NASA,1992.
[10] CUSHING G E. Candidate cave entrances on Mars[J]. Journal of Cave and Karst Studies,2012,74(1):33-47.
[11] HARUYAMA J,MOROTA T,KOBAYASHI S,et al. Lunar holes and lava tubes as resources for lunar science and exploration [M]. Moon:Prospective Energy and Material Resources,2012:139-163.
[12] WAGNER R V,ROBINSON M S. Distribution,formation mechanisms,and significance of lunar pits[J]. Icarus,2014,237:52-60.
[13] SAURO F,POZZOBON R,MASSIRONI M,et al. Lava tubes on Earth,Moon and Mars:a review on their size and morphology revealed by comparative planetology[J]. Earth-Science Reviews,2020,209:103288.
[14] ANDREWS-HANNA J C,BESSERER J,HEAD III J W,et al. Structure and evolution of the lunar Procellarum region as revealed by GRAIL gravity data[J]. Nature,2014,514(7520):68-71.
[15] CHAPPAZ L,SOOD R,MELOSH H J,et al. Evidence of large empty lava tubes on the Moon using GRAIL gravity[J]. Geophysical Research Letters,2017,44(1):105-112.
[16] KAKU T,HARUYAMA J,MIYAKE W,et al. Detection of intact lava tubes at Marius Hills on the Moon by SELENE (Kaguya) Lunar Radar Sounder[J]. Geophysical Research Letters,2017,44(20):10155-10161.
[17] HARUYAMA J,HIOKI K,SHIRAO M,et al. Possible lunar lava tube skylight observed by SELENE cameras[EB/OL]. (2009-11-1)[2023-10-20].https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2009GL040635.
[18] KOBAYASHI T,KIM J H,LEE S R,et al. Nadir detection of lunar lava tube by Kaguya lunar radar sounder[J]. IEEE Transactions on Geoscience and Remote Sensing,2020,59(9):7395-7418.
[19] ESMAEILI S,KRUSE S,JAZAYERI S,et al. Resolution of lava tubes with ground penetrating radar:the TubeX project[J]. Journal of Geophysical Research:Planets,2020,125(5):e2019JE006138.
[20] MIYAMOTO H,HARUYAMA J I,KOBAYASHI T,et al. Mapping the structure and depth of lava tubes using ground penetrating radar[J]. Geophysical Research Letters,2005,32(21):L21316.
[21] 陶奎元. 中国雷琼·海口火山群·世界地质公园研究 [M]. 南京:东南大学出版社,2012.
[22] ONO T,KUMAMOTO A,NAKAGAWA H,et al. Lunar radar sounder observations of subsurface layers under the nearside maria of the Moon[J]. Science,2009,323(5916):909-912.
[23] KOBAYASHI T,KIM J H,LEE S R,et al. Synthetic aperture radar processing of Kaguya lunar radar sounder data for lunar subsurface imaging[J]. IEEE Transactions on Geoscience and Remote Sensing,2011,50(6):2161-2174.
[24] KOBAYASHI T,OYA H,ONO T. A-scope analysis of subsurface radar sounding of lunar mare region[J]. Earth,Planets and Space,2002,54(10):973-982.
[25] ZHANG L,XU Y,ZENG Z,et al. Simulation of Martian Near-Surface Structure and Imaging of Future GPR Data From Mars[J]. IEEE Transactions on Geoscience and Remote Sensing,2022,60:1-12.
[26] ZHANG H B,ZHENG L,SU Y,et al. Performance evaluation of lunar penetrating radar onboard the rover of CE-3 probe based on results from ground experiments[J]. Research in Astronomy and Astrophysics,2014,14(12):1633.
[27] KRAINYUKOV A,LYAKSA I. Detection of tree roots in an urban area with the use of ground penetrating radar[J]. Transport and Telecommunication Journal,2016,17(4):362-370.
[28] ABD GANI A,HAMID R. Undergrounds water pipe mapping using ground penetrating radar and global positioning system[J]. Journal of Advanced Research in Applied Mechanics,2018,50(1):1-11.
[29] ZHANG L,LI J,ZENG Z,et al. Stratigraphy of the Von Kármán crater based on Chang’E-4 lunar penetrating radar data[J]. Geophysical Research Letters,2020,47(15):e2020GL088680.
[30] ZHANG L,ZENG Z,LI J,et al. Parameter estimation of lunar regolith from lunar penetrating radar data[J]. Sensors,2018,18(9):2907.
[31] WARREN C,GIANNOPOULOS A,GIANNAKIS I. GprMax:open source software to simulate electromagnetic wave propagation for ground penetrating radar[J]. Computer Physics Communications,2016,209:163-170.
[32] ROBINSON E A. Seismic time-invariant convolutional model[J]. Geophysics,1985,50(12):2742-2751.
[33] XIA J,FRANSEEN E K,MILLER R D,et al. Improving ground-penetrating radar data in sedimentary rocks using deterministic deconvolution[J]. Journal of Applied Geophysics,2003,54(1-2):15-33.
[34] YILMAZ Ö. Seismic data analysis:processing,inversion,and interpretation of seismic data [M]. Tulsa:Society of Exploration Geophysicists,2001.
[35] HOLLAND J H. Genetic algorithms[J]. Scientific American,1992,267(1):66-73.
[36] GOLDBERG D E. Real-coded genetic algorithms,virtual alphabets and blocking [M]. Princeton:Citeseer,1990.
[37] YANG C,QIAN Q,WANG F,et al. An improved adaptive genetic algorithm for function optimization[C]//Proceedings of the 2016 IEEE International Conference on Information and Automation (ICIA). [S. l.]:IEEE,2016.
[38] HANSEN W,SILL W,WARD S. The dielectric properties of selected basalts[J]. Geophysics,1973,38(1):135-139.
PDF(2586 KB)

Accesses

Citations

Detail

Sections
Recommended

/