Non-Uniform Constraints Processing for Multi-Node Flexible Lander

CHAI Jingxuan1, WU Xinyu2, GONG Youmin2, MEI Jie2, MA Guangfu2

PDF(1657 KB)
PDF(1657 KB)
Journal of Deep Space Exploration ›› 2024, Vol. 11 ›› Issue (3) : 225-232. DOI: 10.15982/j.issn.2096-9287.2024.20230136
Special Issue:Intelligent Landing on Small Celestial Bodies

Non-Uniform Constraints Processing for Multi-Node Flexible Lander

  • CHAI Jingxuan1, WU Xinyu2, GONG Youmin2, MEI Jie2, MA Guangfu2
Author information +
History +

Abstract

To address the issue of non-uniform constraints in the cooperative descent trajectory planning of the novel multi-node flexible lander, a distributed optimization method based on control barrier functions is proposed. This method requires only relative distance information between nodes to solve the conflict-free descent trajectories for each node. The effectiveness of the proposed method is demonstrated through simulations of two typical scenarios of cooperative descent of the multi-node flexible lander. This approach offers a new perspective for addressing the non-uniform constraints problem of the multi-node flexible lander.

Keywords

multi-node flexible lander / non-uniform constraints / asteroid soft landing / control barrier function / distributed optimization

Cite this article

Download citation ▾
CHAI Jingxuan, WU Xinyu, GONG Youmin, MEI Jie, MA Guangfu. Non-Uniform Constraints Processing for Multi-Node Flexible Lander. Journal of Deep Space Exploration, 2024, 11(3): 225‒232 https://doi.org/10.15982/j.issn.2096-9287.2024.20230136

References

[1] AKIRA F. The rubble-pile asteroid itokawa as observed by Hayabusa[J]. Science,2006,312(5778):1330-1334.
[2] YUICHI T,MAKOTO Y,MASANAO A,et al. System design of the Hayabusa 2 Asteroid sample return mission to 1999 JU3[J]. Acta Astronautica,2013,91:356-362.
[3] CHESLEY S R,FARNOCCHIA D,NOLAN M,et al. Orbit and bulk density of the OSIRIS-REx target asteroid(101955)Bennu[J]. Icarus,2014,235:5-22.
[4] YANO H,KUBOTA T,MIYAMOTO H,et al. Touchdown of the Hayabusa spacecraft at the Muses sea on Itokawa[J]. Science,2006,312(5778):1350-1353.
[5] BIELE J,ULAMEC S,MAIBAUM M,et al. The landing of philae and inferences about comet surface mechanical properties[J]. Science,2015,349(6247):aaa9816.
[6] ZENG X Y,LI Z W,GAN Q B,et al. Numerical study on low-velocity impact between asteroid lander and deformable regolith[J]. Journal of Guidance,Control,and Dynamics,2022,45(9):1644-1660.
[7] HUANG C Y,YU Y,CHENG B,et al. Long-term trends of regolith movement on the surface of small bodies[J]. Nonlinear Dynamics,2022,110(3):2283-2296.
[8] MARECHAL L,BALLAND P,LINDENROTH L,et al. Toward a common framework and database of materials for soft robotics[J]. Soft Robotics,2021,8(3):284-29.
[9] SINATRA N,TEEPLE C,VOGT D,et al. Ultragentle manipulation of delicate structures using a soft robotic gripper[J]. Science Robotics,2019,4(33):5425.
[10] XIONG J Q,CHEN J,LEE P S. Functional fibers and fabrics for soft robotics,wearables,and human-robot interface[J]. Advanced Materials,2021,33(19):2002640.
[11] FENG R Y,YOSHIDA K,LI J F,et al. Rebound stabilization for an asteroid lander by flexible plate design[J]. Aerospace Science and Technology,2022,131:107969.
[12] ZHANG Y ,YU Y,BAOYIN H X. Dynamical behavior of flexible net spacecraft for landing on asteroid[J]. Astrodynamics,2021,5:249-261.
[13] ZHAI G,LI J,SUN Y Y,et al. Research on asteroid landing with a new flexible spacecraft[J]. Journal of Aerospace Engineering,2022,35(5):04022068.
[14] LITTLEFIELD Z,SUROVIK D,VESPIGNANI M,et al. Kinodynamic planning for spherical tensegrity locomotion with effective gait primitives[J]. The International Journal of Robotics Research,2019,38(12-13):1442-1462.
[15] SUROVIK D,WANG K,VESPIGNANI M,et al. Adaptive tensegrity locomotion:controlling a compliant icosahedron with symmetry-reduced reinforcement learning[J]. The International Journal of Robotics Research,2021,40(1):375-396.
[16] 崔平远,张成宇,朱圣英,等. 小天体柔性附着技术[J]. 宇航学报,2023,44(6):805-816.
CUI P Y,ZHANG C Y,ZHU S Y,et al. Technologies for flexible landing on small celestial bodies[J]. Journal of Astronautics,2023,44(6):805-816.
[17] YAN W F,FENG R Y,BAOYIN H X. Stability of a flexible asteroid lander with landing control[J]. Aerospace,2022 9(11):71.
[18] 徐瑞,李朝玉,朱圣英,等. 深空探测器自主规划技术研究进展[J]. 深空探测学报(中英文),2021,8(2):111-123.
XU R,LI Z Y,ZHU S Y,et al. Research progress of autonomous planning technology for deep space probes[J]. Journal of Deep Space Exploration,2021,8(2):111-123,109.
[19] 赵宇庭,徐瑞,李朝玉,等. 基于动态智能体交互图的深空探测器任务规划方法[J]. 深空探测学报(中英文),2021,8(5):519-527.
ZHAO Y T,XU R,LI Z Y,et al. Mission planning based on dynamic agent interaction graph for deep space probes[J]. Journal of Deep Space Exploration,2021,8(5):519-527.
[20] 崔平远,陆晓萱,朱圣英,等. 小天体柔性附着状态协同估计方法[J]. 宇航学报,2022,43(9):1219-1226.
CUI P Y,LU X X,ZHU S Y,et al. Cooperative state estimation method for small celestial body flexible landing[J]. Journal of Astronautics,2022,43(9):1219-1226.
[21] OSABER R. Flocking for multi-agent dynamic systems:algorithms and theory[J]. IEEE Transactions on Automatic Control,2006,51(3):401-420.
[22] IBUKI T,WILSON S,YAMAUCHI J,et al. Optimization-based distributed flocking control for multiple rigid bodies[J]. IEEE Robotics and Automation Letters,2020,5(2):1891-1898.
[23] AMES A D,XU X,GRIZZLE J W,et al. Control barrier function based quadratic programs for safety critical systems[J]. IEEE Transactions on Automatic Control,2016,62(8):3861-3876.
PDF(1657 KB)

Accesses

Citations

Detail

Sections
Recommended

/