1. School of Aeronautics and Astronautics, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; 2. Beijing Institute of Spacecraft System Engineering, Beijing 100094, China; 3. Shenzhen Key Laboratory of Intelligent Microsatellite Constellation, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
Show less
History+
Received
Revised
Published
20 Jul 2023
22 Sep 2023
26 Aug 2024
Issue Date
26 Aug 2024
Abstract
This paper reviews the recent research on the Kuiper Belt dust dynamics. Specifically, we review the related space exploration missions, introduce the origin and destruction mechanism of the Kuiper Belt dust, summarize previous studies on the modeling of the Kuiper Belt dust dynamics, and discuss the population migration mechanism as well as the contribution of Kuiper Belt dust to interplanetary dust in the inner solar system. This study helps to understand the dust environment in the solar system boundary and the interstellar space, and provide valuable insights for the orbital design of solar system boundary missions from the perspective of space environmental safety.
YANG Kun, JIA Xiaoyu, LI Fei, LIU Xiaodong.
Progress of Research on Kuiper Belt Dust Dynamics. Journal of Deep Space Exploration, 2024, 11(4): 394‒404 https://doi.org/10.15982/j.issn.2096-9287.2024.20230113
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
This is a preview of subscription content, contact us for subscripton.
References
[1] STERN S A,COLWELL J E. Collisional erosion in the primordial Edgeworth-Kuiper Belt and the generation of the 30-50 AU Kuiper gap[J]. Astrophysical Journal,1997,490(2):879-882. [2] LIOU J C,ZOOK H A,DERMOTT S F. Kuiper Belt dust grains as a source of interplanetary dust particles[J]. Icarus,1996,124(2):429-440. [3] LIOU J C,ZOOK H A,DERMOTT S F. The contribution of Kuiper Belt dust grains to the inner solar system[C]//Proceedings of ASP Conference Series. [S. l. ]:ASP,1996:163-166. [4] 董尚利,刘海,吕钢,等. 光学器件的空间粉尘高速撞击效应研究[J]. 航天器环境工程,2011,28(2):115-120. DONG S L,LIU H,LV G,et al. Investigation of effects of hypervelocity impact of space dust on optical components[J]. Spacecraft Environment Engineering,2011,28(2):115-120. [5] GAIER J R,JAWORSKE D A. Lunar dust on heat rejection system surfaces:problems and prospects[C]//Proceedings of AIP Conference Proceedings. [S. l. ]:American Institute of Physics,2007:27-34. [6] CAIN J R. Lunar dust:the hazard and astronaut exposure risks[J]. Earth,Moon,and Planets,2010,107(1):107-125. [7] STUBBS T J,VONDRAK R R,FARRELL W M. Impact of dust on lunar exploration[J]. Dust in Planetary Systems,2007,643:239-243. [8] EDGEWORTH K E. The origin and evolution of the solar system[J]. Monthly Notices of the Royal Astronomical Society,1949,109(5):600-609. [9] JEWITT D,LUU J. Discovery of the candidate Kuiper Belt object 1992 QB1[J]. Nature,1993,362(6422):730-732. [10] HUMES D H. Results of Pioneer 10 and 11 meteoroid experiments:interplanetary and near-Saturn[J]. Journal of Geophysical Research:Space Physics,1980,85(A11):5841-5852. [11] GURNETT D A,ANSHER J A,KURTH W S,et al. Micron-sized dust particles detected in the outer solar system by the Voyager 1 and 2 plasma wave instruments[J]. Geophysical Research Letters,1997,24(24):3125-3128. [12] PEDERSEN B M,MEYER-VERNET N,AUBIER M G,et al. Dust distribution around Neptune:grain impacts near the ring plane measured by the Voyager planetary radio astronomy experiment[J]. Journal of Geophysical Research:Space Physics,1991,96(1):19187-19196. [13] TERRILE R J,STERN S A. Spacecraft missions to Pluto and Charon system[M]//Proceedings of Pluto and Charon. Tucson:University of Arizona Press,1997. [14] STERN S A,BAGENAL F,ENNICO K,et al. The Pluto system:initial results from its exploration by New Horizons[J]. Science,2015,350(6258):aad1815. [15] American Association for the Advancement of Science. 2019 breakthrough of the year [EB/OL]. (2019-12-19)[2023-07-20].https://vis.sciencemag.org/breakthrough2019. [16] HORANYI M,HOXIE V,JAMES D,et al. The student dust counter on the New Horizons mission[J]. Space Science Review,2008,140:387-402. [17] BERNARDONI E,HORÁNYI M,DONER A,et al. Student dust counter status report:the first 50 AU[J]. The Planetary Science Journal,2022,3(3):69. [18] POPPE A R. An improved model for interplanetary dust fluxes in the outer solar system[J]. Icarus,2016,264:369-386. [19] POPPE A R,LISSE C M,PIQUETTE M,et al. Constraining the solar system’s debris disk with in situ New Horizons measurements from the Edgeworth-Kuiper Belt[J]. The Astrophysical Journal Letters,2019,881(1):L12. [20] STERKEN V J,STRUB P,KRÜGER H,et al. Sixteen years of Ulysses interstellar dust measurements in the solar system. III. Simulations and data unveil new insights into local interstellar dust[J]. The Astrophysical Journal,2015,812(2):141. [21] STRUB P,STERKEN V J,SOJA R,et al. Heliospheric modulation of the interstellar dust flow on to Earth[J]. Astronomy & Astrophysics,2019,621:A54. [22] STERN S A,WEAVER H A,SPENCER J R,et al. The New Horizons Kuiper Belt extended mission[J]. Space Science Reviews,2018,214(4):1-23. [23] National Aeronautics and Space Administration. Our dynamic space environment:heliophysics science and technology roadmap for 2014-2033[EB/OL]. (2020-08-18)[2023-07-20]. https://science.nasa.gov/science-red/s3fs- public/atoms/files/2014_HelioRoadmap_Final_Reduced.pdf. [24] WIMMER-SCHWEINGRUBER R F,MCNUTT R,SCHWADRON N A,et al. Interstellar heliospheric probe/heliospheric boundary explorer mission—a mission to the outermost boundaries of the solar system[J]. Experimental Astronomy,2009,24(1):9-46. [25] 张爱兵,李晖,孔令高,等. 太阳系边际探测任务的科学载荷配置研究[J]. 深空探测学报(中英文),2020,7(6):545-553. ZHANG A B,LI H,KONG L G,et al. Scientific payloads proposal for Chinese solar system boundary exploration mission[J]. Journal of Deep Space Exploration,2020,7(6):545-553. [26] MILLIS R L,BUIE M W,WASSERMAN L H,et al. The Deep Ecliptic Survey:a search for Kuiper Belt objects and Centaurs. I. description of methods and initial results[J]. The Astronomical Journal,2002,123(4):2083. [27] ELLIOT J L,KERN S D,CLANCY K B,et al. The Deep Ecliptic Survey:a search for Kuiper Belt objects and Centaurs. II. Dynamical classification,the Kuiper Belt plane,and the core population[J]. The Astronomical Journal,2005,129(2):1117. [28] JONES R L,GLADMAN B,PETIT J M,et al. The CFEPS Kuiper Belt survey:strategy and presurvey results[J]. Icarus,2006,185(2):508-522. [29] KAVELAARS J J,JONES R L,GLADMAN B J,et al. The Canada-France ecliptic plane survey—L3 data release:the orbital structure of the Kuiper Belt[J]. The Astronomical Journal,2009,137(6):4917. [30] PETIT J M,KAVELAARS J J,GLADMAN B J,et al. The Canada-France ecliptic plane survey—full data release:the orbital structure of the Kuiper Belt[J]. The Astronomical Journal,2011,142(4):131. [31] GLADMAN B,LAWLER S M,PETIT J M,et al. The resonant trans-Neptunian populations[J]. The Astronomical Journal,2012,144(1):23. [32] BANNISTER M T,KAVELAARS J J,PETIT J M,et al. The outer solar system origins survey. I. design and first-quarter discoveries[J]. The Astronomical Journal,2016,152(3):70. [33] BANNISTER M T,GLADMAN B J,KAVELAARS J J,et al. OSSOS. VII. 800+ trans-Neptunian objects—the complete data release[J]. The Astrophysical Journal Supplement Series,2018,236(1):18. [34] LAWLER S M,SHANKMAN C,KAVELAARS J J,et al. OSSOS. VIII. the transition between two size distribution slopes in the scattering disk[J]. The Astronomical Journal,2018,155(5):197. [35] STERN S A. Signatures of collisions in the Kuiper Disk[J]. Astronomy and Astrophysics,1996,310(3):999-1010. [36] YAMAMOTO S,MUKAI T. Dust production by impacts of interstellar dust on Edgeworth-Kuiper Belt objects[J]. Astronomy and Astrophysics,1998,329(2):785-791. [37] DELL’ORO A,BAGATIN A C,BENAVÍDEZ P G,et al. Statistics of encounters in the trans-Neptunian region[J]. Astronomy & Astrophysics,2013,558:A95. [38] GLADMAN B,MARSDEN B G,VANLAERHOVEN C. The solar system beyond Neptune[M]. Tucson:University of Arizona Press,2008:43-57. [39] ABEDIN A Y,KAVELAARS J J,GREENSTREET S,et al. OSSOS. XXI. collision probabilities in the Edgeworth-Kuiper Belt[J]. The Astronomical Journal,2021,161(4):195. [40] WETHERILL G W. Collisions in the asteroid belt[J]. Journal of Geophysical Research,1967,72(9):2429-2444. [41] DAVIS D R,FARINELLA P. Collisional evolution of Edgeworth-Kuiper Belt objects[J]. Icarus,1997,125(1):50-60. [42] DELL’ORO A,MARZARI F,PAOLICCHI P,et al. Updated collisional probabilities of minor body populations[J]. Astronomy & Astrophysics,2001,366(3):1053-1060. [43] MANN I,MEYER-VERNET N,CZECHOWSKI A. Dust in the planetary system:dust interactions in space plasmas of the solar system[J]. Physics Reports,2014,536(1):1-39. [44] BERTAUX J L,BLAMONT J E. Possible evidence for penetration of interstellar dust into the solar system[J]. Nature,1976,262(5566):263-266. [45] MORFILL G E,GRÜN E. The motion of charged dust particles in interplanetary space—II. Interstellar grains[J]. Planetary and Space Science,1979,27(10):1283-1292. [46] GRÜN E,ZOOK H A,BAGUHL M,et al. Discovery of Jovian dust streams and interstellar grains by the Ulysses spacecraft[J]. Nature,1993,362(6419):428-430. [47] MANN I. Interstellar dust in the solar system[J]. Annual Review of Astronomy and Astrophysics,2010,48:173-203. [48] LANDGRAF M. Modeling the motion and distribution of interstellar dust inside the heliosphere[J]. Journal of Geophysical Research:Space Physics,2000,105(A5):10303-10316. [49] FRISCH P C,SLAVIN J D. Interstellar dust close to the Sun[J]. Earth,Planets and Space,2013,65:175-182. [50] SHIVAKARTHIK E,MEKA J K,SURENDRA V S,et al. Sticking dust and micrometeorite particles on to ices at high impact velocities-implications for astrochemical ice enrichment[J]. Planetary and Space Science,2020,190:104972. [51] LANDGRAF M,LIOU J C,ZOOK H A,et al. Origins of solar system dust beyond Jupiter[J]. The Astronomical Journal,2002,123(5):2857. [52] HAN D,POPPE A R,PIQUETTE M,et al. Constraints on dust production in the Edgewort-Kuiper Belt from Pioneer 10 and New Horizons measurements[J]. Geophysical Research Letters,2011,38(24):L24102. [53] FARNHAM T L,WELLNITZ D D,HAMPTON D L,et al. Dust coma morphology in the Deep Impact images of Comet 9P/Tempel 1[J]. Icarus,2007,191(2):146-160. [54] SMITH B A,SODERBLOM L A,BANFIELD D,et al. Voyager 2 at Neptune:imaging science results[J]. Science,1989,246(4936):1422-1449. [55] LUU J X,JEWITT D C. Reflection spectrum of the Kuiper Belt object 1993 SC[J]. Astronomical Journal,1996,111:499. [56] CLARK B E,HAPKE B,PIETERS C,et al. Asteroid space weathering and regolith evolution[J]. Asteroids III,2002,1:585-599. [57] SCHEERES D J. Landslides and mass shedding on spinning spheroidal asteroids[J]. Icarus,2015,247:1-17. [58] HIRABAYASHI M,SÁNCHEZ D P,SCHEERES D J. Internal structure of asteroids having surface shedding due to rotational instability[J]. The Astrophysical Journal,2015,808(1):63. [59] MORO-MARTÍN A,MALHOTRA R. A study of the dynamics of dust from the Kuiper Belt:spatial distribution and spectral energy distribution[J]. The Astronomical Journal,2002,124(4):2305. [60] KOBAYASHI H,KIMURA H,YAMAMOTO S,et al. Ice sublimation of dust particles and their detection in the outer solar system[J]. Earth,Planets and Space,2010,62(1):57-61. [61] MCDONNELL J A M,FLAVILL R P. Solar wind sputtering on the lunar surface-equilibrium crater densities related to past and present microparticle influx rates[C]//Proceedings of Lunar and Planetary Science Conference. Houston:Science Research Council of England. 1974:2441-2449. [62] MCDONNELL J A M,ASHWORTH D G,FLAVILL R P,et al. The characterization of lunar surface impact erosion and solar wind sputter processes on the lunar surface[J]. Philosophical Transactions of the Royal Society of London. Series A,Mathematical and Physical Sciences,1977,285(1327):303-308. [63] FLAVILL R P,CAREY W C,MCDONNELL J A M,et al. Progress in defining the solar wind sputter rate on protoplanets and interplanetary matter[J]. Planetary and Space Science,1980,28(5):511-524. [64] JOHNSON R E,BARAGIOLA R. Lunar surface:sputtering and secondary ion mass spectrometry[J]. Geophysical Research Letters,1991,18(11):2169-2172. [65] MUKAI T,NAKAMURA A M,BLUM J,et al. Physical processes on interplanetary dust[M]//Interplanetary Dust. Berlin:Springer,2001:445-507. [66] MORO-MARTÍN A,MALHOTRA R. Dynamical models of Kuiper Belt dust in the inner and outer solar system[J]. The Astronomical Journal,2003,125(4):2255. [67] JOHNSON R E,LANZEROTTI L J. Ion bombardment of interplanetary dust[J]. Icarus,1986,66(3):619-624. [68] JOHNSON R E. EnergetiC cHARGED-pARTICLE iNTERACTIONS WITH aTMOSPHERES AND sURFaces[M]. New York:Springer,1990. [69] BURNS J A,LAMY P L,SOTER S. Radiation forces on small particles in the solar system[J]. Icarus,1979,40(1):1-48. [70] MIGNARD F. Radiation pressure and dust particle dynamics[J]. Icarus,1982,49(3):347-366. [71] GUSTAFSON B A S. Physics of zodiacal dust[J]. Annual Review of Earth and Planetary Sciences,1994,22(1):553-595. [72] BURNS J A,HAMILTON D P,SHOWALTER M R. Interplanetary dust[M]. Berlin:Springer, 2001: 641-725. [73] STERN D P. Representation of magnetic fields in space[J]. Reviews of Geophysics,1976,14(2):199-214. [74] LIOU J C,ZOOK H A. Signatures of the giant planets imprinted on the Edgeworth-Kuiper Belt dust disk[J]. The Astronomical Journal,1999,118(1):580. [75] HOLMES E K,DERMOTT S F,GROGAN K. Modeling Resonant Structure in the Kuiper Belt[C]//Proceedings of American Astronomical Society Meeting. [S. l.]:American Astronomical Society,1999. [76] LIOU J C,KAUFMANN D E. Structure of the Kuiper Belt dust disk[M]//The sOLAR sYSTEM bEYONd Neptune. Tucson:University of Arizona Press,2008:425. [77] GURNETT D A,KURTH W S. Electron plasma oscillations upstream of the solar wind termination shock[J]. Science,2005,309(5743):2025-2027. [78] POPPE A,JAMES D,JACOBSMEYER B,et al. First results from the Venetia Burney Student Dust Counter on the New Horizons mission[J]. Geophysical Research Letters,2010,37:L11101. [79] PIQUETTE M,POPPE A R,BERNARDONI E,et al. Student dust counter:status report at 38 AU[J]. Icarus,2019,321:116-125. [80] GRÜN E,ZOOK H A,FECHTIG H,et al. Collisional balance of the meteoritic complex[J]. Icarus,1985,62(2):244-272. [81] LIOU J C,ZOOK H A. Comets as a source of low eccentricity and low inclination interplanetary dust particles[J]. Icarus,1996,123(2):491-502. [82] DERMOTT S F,DURDA D D,GUSTAFSON B A S,et al. Zodiacal dust bands[C]//Proceedings of Asteroids,Comets,Meteors 1993:Proceedings of the 160th Symposium of the International Astronomical Union. [S. l.]:International Astronomical Union,1994:127-142. [83] DOHNANYI J S. Sources of interplanetary dust:asteroids[C]//Proceedings of International Astronomical Union Colloquium. [S. l. ]:International Astronomical Union,1976. [84] LIOU J C,DERMOTT S F,XU Y L. The contribution of cometary dust to the zodiacal cloud[J]. Planetary and Space Science,1995,43(6):717-722. [85] KORTENKAMP S J,DERMOTT S F. Accretion of interplanetary dust particles by the Earth[J]. Icarus,1998,135(2):469-495. [86] BROWNLEE D E,JOSWIAK D J,LOVE S G,et al. Identification and analysis of cometary IDPs[C]//Proceedings of Lunar and Planetary Science Conference. Houston:The Lunar and Planetary Institute, 1994. [87] KELLER L P,FLYNN G J. Evidence for a significant Kuiper Belt dust contribution to the zodiacal cloud[J]. Nature Astronomy,2022,6(6):731-735.
AI Summary ×
Note: Please note that the content below is AI-generated. Frontiers Journals website shall not be held liable for any consequences associated with the use of this content.