Fast Spin Cross-Scale Small-Body Light Invariant Matching Algorithm

LI Shuai1,2, LI Jinyi1,2, LIU Yanjie1,2, SHAO Wei1,2, HUANG Xiangyu3,4

PDF(3267 KB)
PDF(3267 KB)
Journal of Deep Space Exploration ›› 2024, Vol. 11 ›› Issue (1) : 56-62. DOI: 10.15982/j.issn.2096-9287.2024.20230038
Topic: Autonomous Navigation and Control Technology for Landing and Ascending of Extraterrestrial Objects

Fast Spin Cross-Scale Small-Body Light Invariant Matching Algorithm

  • LI Shuai1,2, LI Jinyi1,2, LIU Yanjie1,2, SHAO Wei1,2, HUANG Xiangyu3,4
Author information +
History +

Abstract

During the attachment process of small body spacecraft, there are scale, viewpoint and illumination variations in the image, making it difficult for traditional feature-matching algorithms to obtain accurate matches. In this paper, a small-body cross-scale illumination invariant matching algorithm is proposed. To address the problem of scale changes in the image during the attachment process, the global attention mechanism is combined with the dilated convolution to construct a scale adaptive adjustment module; the viewpoint invariant feature extraction module is designed to solve the problem of low matching accuracy under the large viewpoint changes in the feature matching algorithm; the self-attention mechanism is combined with the inter-attention mechanism to establish the feature dependency relationship, and the illumination invariant features are extracted. Experimental validation is carried out using the real images of Ceres and Bennu, and the results show that the proposed algorithm achieves an accuracy of more than 89% under large scale, view angle and illumination changes.

Keywords

small body / feature matching / deep learning / invariant feature

Cite this article

Download citation ▾
LI Shuai, LI Jinyi, LIU Yanjie, SHAO Wei, HUANG Xiangyu. Fast Spin Cross-Scale Small-Body Light Invariant Matching Algorithm. Journal of Deep Space Exploration, 2024, 11(1): 56‒62 https://doi.org/10.15982/j.issn.2096-9287.2024.20230038

References

[1] 黄翔宇,徐超,胡荣海,等. 小行星动能撞击自主导航与制导方法研究[J]. 深空探测学报(中英文),2022,9(4):438-446.
HUANG X Y,XU C,HU R H,et al. Autonomous navigation and guidance for asteroid kinetic impact mission[J]. Journal of Deep Space Exploration,2022,9(4):438-446.
[2] LAURETTA D S,BALRAM-KNUTSON S S,BESHORE E,et al. OSIRIS-REx:sample return from asteroid (101955) Bennu[J]. Space Science Reviews,2017,212:925-984.
[3] HAND E. Philae probe makes bumpy touchdown on a comet[J]. Science,2014,346(6212):900-901.
[4] TSUDA Y,SAIKI T,TERUI F,et al. Hayabusa 2 mission status:landing,roving and cratering on asteroid Ryugu[J]. Acta Astronautica,2020,171:42-54.
[5] 崔平远,贾贺,朱圣英,等. 小天体光学导航特征识别与提取研究进展[J]. 宇航学报,2020,41(7):880-888.
CUI P Y,JIA H,ZHU S Y,et al. Research progress on optical navigation feature recognition and extraction technologies for small body[J]. Journal of Astronautics,2020,41(7):880-888.
[6] 王大轶,孟林智,叶培建,等. 深空探测器的自主运行技术研究[J]. 航天器工程,2018,27(6):1-10.
WANG D Y,MENG L Z,YE P J,et al. Research of autonomous operation technology for deep space probe[J]. Spacecraft Engineering,2018,27(6):1-10.
[7] 徐超,王大轶,黄翔宇,等. 基于序列图像的火星软着陆自主导航避障方法[J]. 中国科学:物理学 力学 天文学,2022,52(1):35-43.
XU C,WANG D Y,HUANG X Y,et al. Autonomous navigation and hazard-avoidance method based on sequential images for Mars soft landing[J]. SCIENTIA SINICA Physica,Mechanica & Astronomica,2022,52(1):35-43.
[8] KIM J R,MULLER J P,VAN G S,et al. Automated crater detection,a new tool for Mars cartography and chronology[J]. Photogrammetric Engineering & Remote Sensing,2005,71(10):1205-1217.
[9] DUSMANU M,ROCCO I,PAJDLA T,et al. D2-net:a trainable CNN for joint detection and description of local features[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach,CA,USA:IEEE,2019.
[10] DETONE D,MALISIEWICZ T,RABINOVICH A. Superpoint:self-supervised interest point detection and description[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. [S. l.]:IEEE,2018:224-236.
[11] SARLIN P E,DETONE D,MALISIEWICZ T,et al. Superglue:learning feature matching with graph neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. [S. l.]:IEEE,2020:4938-4947.
[12] JIANG W,TRULLS E,HOSANG J,et al. COTR:Correspondence transformer for matching across images [C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. [S. l.]:IEEE,2021:6207-6217.
[13] BARROSO L A,TIAN Y,MIKOLAJCZYK K. ScaleNet:a shallow architecture for scale estimation [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. [S. l.]:IEEE,2022:12808-12818.
[14] FU Y,ZHANG P,LIU B,et al. Learning to reduce scale differences for large-scale invariant image matching[J]. IEEE Transactions on Circuits and Systems for Video Technology,2022,33(3):1335-1348.
[15] ZHOU L,ZHU S,SHEN T,et al. Progressive large scale-invariant image matching in scale space[C]//Proceedings of the IEEE International Conference on Computer Vision. [S. l.]:IEEE,2017:2362-2371.
[16] 姚文龙,刘毅,邵巍,等. 小天体地形动态模拟与着陆视景仿真系统设计[J]. 深空探测学报(中英文),2022,9(4):427-437.
YAO W L,LIU Y,SHAO W,et al. Design of terrain dynamic simulation and landing view simulation system for small celestial bodies[J]. Journal of Deep Space Exploration,2022,9(4):427-437.
PDF(3267 KB)

Accesses

Citations

Detail

Sections
Recommended

/