Research Progress of Radio Frequency Ion Thruster

MA Longfei1, HE Jianwu1,2, LUO Jun1, ZHANG Chu1, YANG Chao1, FU Jiahao2, DUAN Li1,2, KANG Qi1,2

PDF(2186 KB)
PDF(2186 KB)
Journal of Deep Space Exploration ›› 2024, Vol. 11 ›› Issue (2) : 111-123. DOI: 10.15982/j.issn.2096-9287.2024.20230036
Topic: Power and Propulsion Technology for Deep Space

Research Progress of Radio Frequency Ion Thruster

  • MA Longfei1, HE Jianwu1,2, LUO Jun1, ZHANG Chu1, YANG Chao1, FU Jiahao2, DUAN Li1,2, KANG Qi1,2
Author information +
History +

Abstract

The principle of radio frequency ion thrusters(RIT),as well as the research history and achievements of micro-newton and milli-Newton RIT at home and abroad in the past 60 years,was explained in detail. The radio frequency ion propulsion system involves a number of key technical challenges. Preliminary solutions to the problems of propellant selection, radio frequency(RF)circuit impedance matching,gas flow control,electrical neutralization control and lifetime were proposed, and the development trend and research direction were put forward combined with the future application of RIT.

Keywords

radio frequency ion thruster / electric propulsion / micro thrust

Cite this article

Download citation ▾
MA Longfei, HE Jianwu, LUO Jun, ZHANG Chu, YANG Chao, FU Jiahao, DUAN Li, KANG Qi. Research Progress of Radio Frequency Ion Thruster. Journal of Deep Space Exploration, 2024, 11(2): 111‒123 https://doi.org/10.15982/j.issn.2096-9287.2024.20230036

References

[1] GODDDARD R H. The green notebooks[M]. Worcester,MA:Clark University. 1906.
[2] MEL’KUMOV T M. Pioneers of rocket technology,selected works[D]. Russia:Academy of Sciences of the USSR,1964.
[3] 贺建武. 射频离子微推力器工作机理及性能优化研究[D]. 北京:中国科学院大学,2017.
HE J W. Researches on working mechanism and performance optimization of radio-frequency ion micro-thruster[D]. Beijing:University of Chinese Academy of Sciences,2017.
[4] COLLINGWOOD C. Investigation of a miniature differential ion thruster[D]. Southampton:University of Southampton,2011.
[5] GOEBEL D M,KATZ I. Fundamental of electric propulsion:ion and hall thrusters[M]. Pasadena:California Institure of Technology,2008.
[6] 孙小兵,康小明,赵万生,等. 场发射推进器的研究现状及展望[J]. 机械,2006,33(8):1-4.
SUN X B,KANG X M,ZHAO W S,et al. Research situation and prospect of FEEP[J]. Machinery,2006,33(8):1-4.
[7] 康小明,杭观荣,朱智春. 霍尔电推进技术的发展与应用[J]. 火箭推进,2017,43(1):8-17,37.
KANG X M,HANG G R,ZHU Z C. Development and application of Hall electric propulsion technology[J]. Journal of Rocket Propulsion,2017,43(1):8-17,37.
[8] KORNFELD G,KOCH N,HARMANN H P. Physics and evolution of HEMP-thrusters[C]//Proceedings of 30th International Electric Propulsion Conference. Florence,Italy:IEPC,2007.
[9] KELLER A. Feasibility of a down-scaled HEMP thruster[D]. Giessen,Germany:University of Giessen,2013.
[10] TAJMAR M. Advanced space propulsion systems[M]. New York:Springer-Verlag Wien,2003.
[11] SCHWER D A,MERKLE C L. Analysis of microwave-heated rocket engines for space propulsion[C]//Proceedings of AIAA,SAE,ASME,and ASEE,Joint Propulsion Conference and Exhibit. Monterey,CA:AIAA,1993.
[12] FUNAKI I,NAKAYAMA Y,HORISAWA H. Micro-thruster options for the Japanese space gravitational wave observatory missions[C]//Proceedings of 32nd International Electric Propulsion Conference. Wiesbaden,Germany:IEPC,2011.
[13] SHABSHELOWITZ A. Study of RF plasma technology applied to air-breathing electric propulsion[D]. Ann Arbor:University of Michigan,2013.
[14] JACKSON S W. Design of an air-breathing electric thruster for cubesat applications[D]. Boulder :University of Colorado at Boulder,2017.
[15] LOTZ B. Plasma physical and material physical aspects of the application of atmospheric gases as a propellant for ion-thruster of the RIT-type[D]. Giessen,Hessen,Germany:Justus-Liebig-University of Giessen,2013.
[16] LOEB H W,WEIS S W,FEILI D,et al. Development of RIT-microthrusters[C]//Proceedings of 55th International Astronautical Congress. Vancouver:IAC,2004.
[17] BASSNER H,KILLINGER R,LEITER H,et al. Development steps of the RF-ion thrusters RIT[C]//Proceedings of 32nd International Electric Propulsion Conference. Wiesbaden:IEPC,2011.
[18] FEILI D,LOTZ B,BONNET S,et al. μRIT-2.5-a new optimized microthruster of Giessen University[C]//Proceedings of International Electric Propulsion Conference. Ann Arbor,Michigan:IEPC,2009.
[19] FEILI D,CARA D M D,LEITER H J,et al. The μRIT-4 ion engine:a first step towards a European mini-ion engine system development[C]//Proceedings of 30th International Electric Propulsion Conference. Florence:IEPC,2007.
[20] HABL L T C,GESSINI P,LERTER H,et al. Investigation of a modified RIT-μX operating as an electron source[C]//Proceedings of 34th International Electric Propulsion Conference. Kobe:IEPC,2015.
[21] MISTOCO V F,TRUDEL T A,BILEN S G,et al. Vacuum testing of the miniature radio-frequency ion thruster[C]//Proceedings of 29th International Electric Propulsion Conference. Princeton,New Jersey:IEPC,2005.
[22] TRUDEL T A,BILEN S G,MICCI M M. Design and performance testing of a 1-cm miniature radio-frequency ion thruster[C]//Proceedings of 31st International Electric Propulsion Conference. Florence:IEPC,2007.
[23] TSAY M M. Two-dimensional numerical modeling of radio-frequency ion engine discharge[D]. Boston,Massachusetts,US:Massachusetts Institute of Technology,2010.
[24] TSAY M,HOHMAN K,OLSON L. Micro RF ion engine for small satellite applications[C]//Proceedings of 23rd Conference on Small Satellites. Logan,USA:AIAA,2009.
[25] TSAY M,HOHMAN K,ROSENBLAD N,et al. Micro radio-frequency ion propulsion system[C]//Proceedings of Aviation and Aeronautics Forum and Exposition. Denver,CO:AIAA,2012.
[26] BUSEK COMPANY INCOMPANY. 1 cm RF ion thruster BIT-1[R]. Natick:Busek Company Incompany,2015.
[27] DOBKEVICIUS M,SMIRNOVA M,PEREZ A,et al. Double-sided ion thruster for contactless space debris removal:experimental result[C]//Proceedings of 35th International Electric Propulsion Conference. Atlanta,Georgia:IEPC,2017.
[28] RAFALSKYI D,AANESLAND A. Coincident ion acceleration and electron extraction for space propulsion using the self-bias formed on a set of RF biased grids bounding a plasma source[J]. Journal of Physics D:Applied Physics,2014,47:495203.
[29] RAFALSKYI D,AANESLAND A. A neutralizer-free gridded ion thruster embedded into a 1U cubesat module[C]//Proceedings of 35th International Electric Propulsion Conference. Atlanta,Georgia:IEPC,2017.
[30] LAFLEUR T,RAFALSKYI D,AANESLAND A. radio-frequency biasing of ion thruster grids[C]//Proceedings of 36th International Electric Propulsion Conference. Huntsville,Alabama:IEPC,2019.
[31] RAFALSKYI D,AANESLAND A. A neutralizer-free gridded ion thruster embedded into a 1Ucubesat module[C]//Proceedings of 35th International Electric Propulsion Conference. Atlanta,Georgia:Electric Rocket Propulsion Society,2017.
[32] 马隆飞,贺建武,段俐,等. 微牛级射频离子推力器结构优化研究[J]. 推进技术,2021,47(4):21-30.
MA L F,HE J W,DUAN L,et al. Structure optimization of micro-newton class radio-frequency ion thruster[J]. Journal of Propulsion Technology,2021,47(4):21-30.
[33] HE J W,LIU P,GAO R L,et al. Research on the neutralization control of the RF ion micropropulsion system for the “Taiji-1” satellite mission[J] Plasma Science And Technology,2020,22(9):094002.
[34] HE J W,MA L F,XUE S W,et al. Study of electron-extraction characteristics of an inductively coupled radio-frequency plasma neutralizer[J]. Plasma Science and Technology,2018,20(2):025403.
[35] LOEB H W. Recent work on radio frequency ion thrusters[J]. Journal of Spacecraft and Rockets,1971,8(5):494-500.
[36] ARIANE G. Development steps of the RF-ion thrusters RIT[EB/OL]. (2023-5-12)[2023-10-12]. https://www.space-propulsion.com/spacecraft-propulsion/propulsion-systems/electric-propulsion/index.html.
[37] KILLINGER R,KUKIES R,SURAUER M,et al. ARTEMIS orbit raising inflight experience with ion propulsion[J]. Acta Astronautica,2003,53(4-10):607-621.
[38] HOLSTE K,GARTNER W,ZSCHATZSCH D,et al. Perfomance of an iodine-fueled radio-frequency ion-thruster[J]. The European Physical Journal D,2018,72(9):1-7.
[39] LEITER H,KILLINGER R,BASSNER H,et al. Evaluation of the performance of the advanced 200 mN radio-frequency ion thruster RIT-XT[C]//Proceedings of AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Indianapolis,Indiana :AIAA,2002.
[40] FEILI D,SMIRNOVA M,DOBKEVICIUS M,et al. Design,construction and testing of a radio frequency mini ion engine according to the propulsion requirements of the next generation gravity missions “NGGM”[C]//Proceedings of 34th International Electric Propulsion Conference. Kobe:IEPC,2015.
[41] GUARDUCCI F,MARANGONE D,CLARK S,et al. Development and industrialization of the RIT-3.5[C]//Proceedings of 37th International Electric Propulsion Conference. Boston:IEPC,2022.
[42] AANESLAND A,MAZOUFFRE S,CHABERT P. Space exploration technologies pegases a new promising electric propulsion concept[J]. Europhysics News,2011,42(6):28-31.
[43] AANESLAND A,BREDIN J,CHABERT P. A review on ion-ion plasmas created in weakly magnetized electronegative plasmas[J]. Plasma Sources Science and Technology,2014,23(4):044003.
[44] AANESLAND A,RAFALSKYI D,BREDIN J. The PE-GASES gridded ion-ion thruster performance and predictions[J]. IEEE Transactions on Plasma Science,2014,43(1):321-326.
[45] TSAY M,FRONGILLO J,MODEL J,et al. Flight development of iodine BIT-3 RF ion propulsion aystem for SLS EM-1 cubesats[C]//Proceedings of 30th American Institute of Aeronautics and Astronautics. [S. l.]:AIAA,2016.
[46] BUSEK. RF ion thrusters[EB/OL]. (2023-5-12)[2024-3-29]. http://www.busek.com/rf-ion-thrusters.
[47] JEFF F. Artemis 1 cubesat nearing end of misson[EB/OL]. (2023-5-2)[2023-5-12] . https://spacenews.com/artemis-1-cubesat-nearing-end-of-mission/.
[48] TSAY M,TERHAAR R,EMMI K,et. Volume production of gen-2 iodine BIT-3 ion propulsion system[C]//Proceedings of 37th International Electric Propulsion Conference. Boston:IEPC,2022.
[49] TSAY M. 3,500-Hour wear test result of BIT-3 RF ion propulsion system[C]//Proceedings of 37th International Electric Propulsion Conference. Boston:IEPC,2022.
[50] YAVUZ B,TURKOZ E,CELIK M. Prototype design and manufacturing method of an 8 cm diameter RF ion thruster[C]//Proceedings of International Conference on Recent Advances in Space Technologies. Istanbul,Turkey:IEEE,2013.
[51] KOKAL U,TURAN N,CELIK M,et al. Design improvements and experimental measurements of BURFIT-80 RF ion thruster[C]//Proceedings of American Institute of Aeronautics and Astronautics. Atlanta,GA:AIAA,2017.
[52] JAHAMBAKHSH S,CELIK M. Experimental study of the effects of different design parameters on the plasma characteristics and the extracted current of a prototype radio-frequency plasma cathode[C]//Proceedings of 34th International Electric Propulsion Conference. Kobe:IEPC,2015.
[53] ANTROPOV N N,AKHMETZHANOV R V,BOGATYY A V,et al. Experimental research of radio-frequency ion thruster[J]. Thermal Engineering,2016,63(13):957-963.
[54] KRALKINA E,ZADIRIEV I,KHARLAN A. Exploratory testing of a radio-frequency thruster for small satellites[C]//Proceedings of 35th International Electric Propulsion Conference. Georgia:IEPC,2017.
[55] DMYTRO R,JAVIER M,LUI H,et al. In-orbit demonstration of an iodine electric propulsion system[J]. Nature,2021,599:411-415.
[56] GRONDEIN P,LAFLEUR T,CHABERT P,et al. A global model of an iodine gridded plasma thruster[J]. Journal of Plasma,2016,23:033514.
[57] 酆惠芬. 15厘米射频离子推力器_——“RIT-15”的实验研究[J]. 中国空间科学技术,1986(3):58-69.
[58] MA L F,HE J W,DUAN L,et al. Experimental study on the effects of discharge chamber length on 5 cm radio-frequency ion thruster[J]. Microgravity Science and Technology,2020,32(2):513-520.
[59] 田立成,王尚民,孟伟,等. 微电推进系统研制及应用最新进展[C]//长沙:第十三届中国电推进技术学术研讨会,2017.
[60] WU C C,SUN X F,GU Z,et al. Numerical research of a 2D axial symmetry hybrid model for the radio-frequency ion thruster[J]. Plasma Science and Technology,2018,20(4):45502.
[61] 李兴达,李建鹏,张兴民,等. 射频离子推力器热特性仿真分析[J]. 推进技术,2020,41(3):707-714.
LI X D,LI J P,ZHANG X M,et al. Simulation analysis of thermal characteristics of RF ion thruster[J]. Journal of Propulsion Technology,2020,41(3):707-714.
[62] 李建鹏,李兴达,张兴民,等. 射频离子推力器多元工质束流调节试验研究[J]. 推进技术,2020,41(8):1914-1920.
LI J P,LI X D,ZHANG X M,et al. Experimental study on beam current regulation of diverse propellant types for RF ion thruster[J]. Journal of Propulsion Technology,2020,41(8):1914-1920.
[63] 李兴达,张兴民,李建鹏,等. 射频电子源数值仿真及实验研究[J]. 推进技术,2019,40(10):2394-2400.
LI X D,ZHANG X M,LI J P,et al. Numerical simulation and experimental study of radio frequency electron source[J]. Journal of Propulsion Technology,2019,40(10):2394-2400.
[64] 夏广庆,徐宗琦,王鹏,等. 无中和器射频离子推力器原理研究[J]. 中国空间科学技术,2016,36(1):1-8.
XIA G Q,XU Z Q,WANG P,et al. Research on the principle of RF ion thruster without a neutralizer[J]. Chinese Space Science and Technology,2016,36(1):1-8.
[65] 蔡建,杨景华,贾少霞,等. 碘工质射频离子微推进技术研究[C]//第十三届中国电推进技术学术研讨会. 长沙:中国宇航学会电推进专业委员会,2017.
[66] YANG J H,JIA S X,ZHANG Z H,et al. Performance of a 4cm iodine-fueled radio-frequency ion thruster[J]. Plasma Science and Technology,2020,22(9):94006-094006.
[67] ZHANG X H ,ZHANG Z H,JIA S X,et al. Influence of anode temperature on ignition performance of the IRIT4-2D iodine-fueled radio frequency ion thruster[J]. Plasma Science and Technology,2022,24(1):015506.
[68] 纳飞卫星动力. 纳飞双头碘工质电推进系统成功入轨[EB/OL]. [2023-5-12](2024-3-29). http://www.aeronsd.com/newsitem/36658.
[69] 李济源,牛晓丽,鲁海峰,等. 1mN射频离子推力器研究[C]//第十八届重点推进学术研讨会. 西安:中国宇航学会电推进专业委员会,2023.
[70] 杨智,郭宏辉,白进纬,等. 无中和器射频偏压栅极电推力器束流特性[C]//第十七届中国电推进学术研讨会. 兰州:中国宇航学会电推进专业委员会,2021.
[71] 李程,杨谨远,张思远,等. 不同工质下射频离子推力器束流特性实验研究[C]//第十八届中国电推进学术研讨会. 西安:中国宇航学会电推进专业委员会,2023.
[72] STEIN W B,ALEXEENKO A A,HRBUD I. Performance modeling of a coaxial radio-frequency gas-discharge microthruster[J]. Journal of Propulsion and Power,2008,24(5):1007-1017.
[73] BUMBARGER P. Analysis of a miniature radio frequency ion thruster with an inductively coupled plasma source[D]. Boise:Boise State University,2013.
[74] ITO S,NAKAMURA T,NISHIDA H,et al. Performance of RF plasma thruster for various magnetic field configurations by permanent magnets[C]//Proceedings of Joint Conference of 30th International Symposium on Space Technology and Science. Hyogo-Kobe,Japan:IEPC,2015.
[75] MA X,NISHIDA H,OSHIO Y,et al. Numerical analysis of RF discharge in a nonuniform magnetic field[J]. Journal of Applied Physics,2022,131(8):083302.
[76] SEKINE H,KOIZUM H,KOMURASAKI K. Azimuthal induced current formation and ion acceleration in an inductive radio frequency plasma thruster[C]//Proceedings of 36th International Electric Propulsion Conference. Huntsville,Alabama:IEPC,2019.
[77] ROBERT H. Development of a plasma simulation tool for radio frequency ion thrusters[D]. Giessen,Germany:Justus-Liebig-Universität Giessen,2013.
[78] CHRIS V. Selbstkonsistente numerische 1D/3D hybridmodellierung von radiofrequenz- ionentriebwerken[D]. Giessen,Germany:Justus-Liebig-Universität Gießen,2015.
[79] SOMMAVILLA T,THURINGER R,KLAR P J. Electrical considerations for RIT engines based on 3D fullwave filed simulation of electromagnetic scattering of their RF coils[C]//Proceedings of 36th International Electric Propulsion Conference. Huntsville,Alabama:IEPC,2019.
[80] BECKER F,NAUSCHÜTT B,CHEN L,et al. Plasma parameter measurement on a RIT-10 using empirical correlations between non-invasive optical emission spectroscopy and Langmuir diagnostics[J]. Journal of Electric Propulsion,2023,2(1):1-12.
[81] MA L F,DUAN L,HE J W,et al. The impact of neutralizer-free ignition of a radio frequency ion thruster on the lifetime of the ion optics system[J]. International Journal of Modern Physics A,2021,36(11n12):2140017.
[82] JIANG W J,WEI L Q,FU W J,et al. A newly designed ignition method for miniature radio frequency ion thruster[J]. Review of Scientific Instruments,2022,3:033506.
[83] 唐欢,李亦非,翁惠焱,等. 射频自中和栅极系统粒子引出加速机理研究[C]//第十六届中国电推进学术研讨会. 北京:中国宇航学会电推进专业委员会,2020.
[84] 李亦非,付宸聪,蔡国飙,等. 微型射频离子推力器放电等离子体全局模型仿真研究[J]. 电工技术学报,2021,36(15):3113-3123.
LI Y F,FU C C,CAI G B,et al. Global model co-simulation of rf ion thruster based on multi-physical field coupling[J]. Transactions of China Electrotechnical Society,2021,36(15):3113-3123.
[85] LI Y F,TANG H,CAI G B,et al. Radio-frequency biasing of ion acceleration grids with different propellants[J]. Plasma Sources Science and Technology,2022,31(3):035009.
[86] 池保勇,余志平,石秉学,等. CMOS射频集成电路分析与设计[M]. 北京:清华大学出版社,2006.
CHI B Y,YU Z P,SHI B X,et al. Analysis and design of CMOS RF integrated circuits[M]. Beijing:Tsinghua University Press,2006.
PDF(2186 KB)

Accesses

Citations

Detail

Sections
Recommended

/