PDF(1697 KB)
Research Papers
Research on Capability of Space Target Detection by Spaceborne Ultraviolet Cameras
- SUN Tianyu1, TANG Yi1,2, LIU Wanyu1, BIAN Ziyu1,2, ZENG Tianji1, XU Wenbin3
Author information
+
1. School of Opticsand Photonics, Beijing Institute of Technology, Beijing 100081, China;
2. Longrays Photoelectric Technology in Suzhou Co., Ltd., Suzhou 215300, China;
3. Beijing Institute of Environmental Characteristics, Beijing 100039, China
Show less
History
+
Received |
Revised |
Published |
20 Oct 2022 |
13 Feb 2023 |
26 Mar 2024 |
Issue Date |
|
26 Mar 2024 |
|
Abstract
The reflection spectra of satellites are shifted to short wavelengths when seasonal scintillation caused by solar wings occurs, and the shorter wavelength UV band has potential advantages in space target solar wing detection. The space target detection signal-to-noise ratio and detection distance models were developed for space target detection. For the most influential material properties in the model, the spectral reflectance of typical satellite materials and solar wing cell materials in the UV and visible bands were measured, and other influencing factors such as detector and deep space background in the model were also analyzed. Using the SJ-5 and Skynet 5D satellites as examples, it was verified that there was indeed a significant advantage of UV in solar wing detection. The results show that compared with the main body visible detection of the satellite, the solar wing UV detection signal-to-noise ratio is enhanced by 1.3~1.6 times, and the detection distance can be increased by 1.5~1.8 times by the combination of UV and visible light. UV has obvious technical advantages over visible light in detection scenes such as Earth’s limb, occultation and engine tail flame detection during satellite deorbiting, thus UV detection has the obvious advantages of cost-efficiency ratio and detection capability in space target detection.
Keywords
space-based ultraviolet /
ultraviolet detection /
space target /
solar wing /
spectral reflectance
Cite this article
Download citation ▾
SUN Tianyu, TANG Yi, LIU Wanyu, BIAN Ziyu, ZENG Tianji, XU Wenbin.
Research on Capability of Space Target Detection by Spaceborne Ultraviolet Cameras. Journal of Deep Space Exploration, 2024, 11(1): 100‒108 https://doi.org/10.15982/j.issn.2096-9287.2024.20220093
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
This is a preview of subscription content, contact
us for subscripton.
References
[1] 王兴龙,蔡亚星,陈士明,等. 多源信息融合在空间态势感知领域的应用与发展[J]. 航天返回与遥感,2021,42(1):11-20.
WANG X L,CAI Y X,CHEN S M,et al. Application and development of multi-source information fusion in space situational awareness[J]. Spacecraft Recov Remot Sens,2021,42(1):11-20.
[2] 郑珍珍,朱振才,康一舟. 天基空间碎片可见光观测系统与关键技术发展概述[J/OL]. 光学学报:1-16[2022-08-29]. http://kns.cnki.net/kcms/detail/31.1252.O4.20220722.2121.044.html.
ZHENG Z Z,ZHU Z C,KANG Y Z. Overview of space-based space debris optical observation systems and key technologies development[J/OL]. Acta Optica Sinica:1-16[2022-08-29]. http://kns.cnki.net/kcms/detail/31.1252.O4.20220722.2121.044.html.
[3] 王雪瑶. 国外空间目标探测与识别系统发展现状研究[J]. 航天器工程,2018,27(3):86-94.
WANG X Y. Development status research of foreign space target detection and identification systems[J]. Spacecraft Engineering,2018,27(3):86-94.
[4] 姜会林,江伦,付强,等. 空间碎片偏振光谱成像探测技术研究[J]. 深空探测学报(中英文),2015,2(3):272-277.
JIANG H L,JIANG L,FU Q,et al. Research on polarization spectral imaging detection technology of space debris[J]. Journal of Deep Space Exploration,2015,2(3):272-277.
[5] 徐融,赵飞,周锦松. 空间点目标光谱探测与特征识别研究进展[J]. 光谱学与光谱分析,2019,39(2):333-339.
XU R,ZHAO F,ZHOU J S. Research progress on spectral detection and feature recognition of spatial point targets[J]. Spectroscopy and Spectral Analysis,2019,39(2):333-339.
[6] LIU D P,XIONG L M,MENG H F,et al. Research on outdoor testing of solar modules[C]//Proceedings of he 6th International Symposium on Advanced Optical Manufacturing and Testing Technology (AOMATT 2012) . Xiamen,China: SPIE-The International Society for Optical Engineering,2012.
[7] 王凯,王训春,钱斌,等. 高效太阳电池及其阵列技术的空间应用研究进展[J]. 硅酸盐学报,2022,50(5):1436-1446.
WANG K,WANG X C,QIAN B,et al. Advances in space applications of efficient solar cells and their arrays[J]. Journal of the Chinese Ceramic Society,2022,50(5):1436-1446.
[8] DUNSMORE A N,KEY J A,TUCKER R M,et al. Spectral measurements of geosynchronous satellites during glint season[J]. Journal of Spacecraft and Rockets,2017,54(2):349-355.
[9] 孙希鹏,杜永超,肖志斌. 空间三结砷化镓太阳电池用紫外反射盖片研究[J]. 电源技术,2019,43(9):1509-1511+1535.
SUN X P,DU Y C,XIAO Z B. Research of ultraviolet reflective coverglass for space triple junction gallium arsenide solar cells[J]. Chinese Journal of Power Sources,2019,43(9):1509-1511+1535.
[10] 袁艳,孙成明,黄锋振,等. 深空背景下空间目标紫外特性建模方法研究[J]. 物理学报,2011,60(8):835-842.
YUAN Y,SUN C M,HUANG F Z,et al. Modeling of ultraviolet characteristics of deep space target[J]. Acta Physica Sinica,2011,60(8):835-842.
[11] BAI L,WU Z S,CAO Y H,et al,Spectral scattering characteristics of space target in near-UV to visible bands[J]. Opt. Express,2014,22(7):8515-8524.
[12] BEDARD D,LEVESQUE M,WALLACE B. Measurement of the photometric and spectral BRDF of small Canadian satellites in a controlled environment[C]//Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference. Maui, Hawaii: Maui Economic Development Board, 2011.
[13] BEDARD D,WADE G A,Abercromby K. Laboratory characterization of homogeneous spacecraft materials[J]. Journal of Spacecraft and Rockets,2015,52(4):1038-1056.
[14] COWARDIN H,ANZ-MEADOR P,REYES J A. Characterizing GEO Titan IIIC transtage fragmentations using ground-based and telescopic measurements[C]//Proceedings of the Advanced Maui Optical and Space Surveillance Technologies (AMOS) Conference. USA: AMOS, 2017 (JSC-CN-40379).
[15] 汪夏,张雅声,徐灿,等. 空间目标褶皱材质BRDF建模方法[J]. 光学学报,2019,39(10):1024001.
WANG X,ZHANG Y S,XU C,et al. Bidirectional reflectance distribution function modeling approach of space objects fold material[J]. Acta Optica Sinica,2019,39(10):1024001.
[16] 汪洪源,张伟,王治乐. 基于高次余弦散射分布的空间卫星可见光特性[J]. 光学学报,2008(3):593-598.
WANG H Y,ZHANG W,WANG Z L. Visible characteristics of space satellite based on Nth cosine scattering distribution[J]. Acta Optica Sinica,2008(3):593-598.
[17] 孟庆宇,张伟,龙夫年. 天基空间目标可见光相机探测能力分析[J]. 红外与激光工程,2012,41(8):2079-2084.
MENG Q Y,ZHANG W,LONG F N. Detection capability analysis of visible light camera for space-based space target[J]. Infrared and Laser Engineering,2012,41(8):2079-2084.
[18] 孙成明,袁艳,赵飞. 空间目标天基成像探测信噪比分析[J]. 红外与激光工程,2015,44(5):1654-1659.
SUN C M,YUAN Y,ZHAO F. Analysis of SNR for space-based imaging detection of space object[J]. Infrared and Laser Engineering,2015,44(5):1654-1659.
[19] 罗磊,唐利斌,左文彬. 紫外增强图像传感器的研究进展[J]. 红外技术,2021,43(11):1023-1033.
LUO L,TANG L B,ZUO W B. Research progress in ultraviolet enhanced image sensors[J]. Infrared Technology,2021,43(11):1023-1033.
[20] 张猛蛟,蔡毅,江峰,等. 紫外增强硅基成像探测器进展[J]. 中国光学,2019,12(1):19-37.
ZHANG M J,CAI Y,JIANG F,et al. Silicon-based ultraviolet photodetection:progress and prospects[J]. Chinese Optics,2019,12(1):19-37.
[21] 张炎,宋战锋. 英国“天网”军用通信卫星系统[J]. 国际太空,2009(1):14-20.
ZHANG Y,SONG Z F. British "Skynet" military communication satellite system[J]. Space International,2009(1):14-20.
[22] W OU. 实践五号卫星[EB/OL].[2022-10-19]. https://baike.baidu.com/item/%E5% AE%9E%E8%B7%B5%E4%BA%94%E5%8F%B7%E5%8D%AB%E6%98%9F/6304276?fr=aladdin.
[23] 国爱燕,白廷柱,胡海鹤,等. 固体火箭发动机羽烟紫外辐射特性分析[J]. 光学学报,2012,32(10):176-183.
GUO A Y,BAI T Z,Hu H H,et al. Analysis of ultraviolet radiation characteristics of solid propellant rocket motor exhaust plume[J]. Acta Optica Sinica,2012,32(10):176-183.
[24] 国爱燕,唐义,白廷柱,等. 液体火箭发动机羽烟三维紫外辐射仿真研究[J]. 北京理工大学学报,2012,32(4):410-414.
GUO A Y,TANG Y,BAI T Z,et al. Simulation of 3-D ultraviolet radiation from liquid rocket engine plume[J]. Transaction of Beijing Institute of Technology,2012,32(4):410-414.