Terrain Reconstruction for Lunar South Pole Region Based on Confidence-Guided Stereo Matching

YOU Qionghua1,2, YE Zhen1,2, TONG Xiaohua1,2, XU Yusheng1,2, LIU Shijie1,2, XIE Huan1,2

PDF(4014 KB)
PDF(4014 KB)
Journal of Deep Space Exploration ›› 2023, Vol. 10 ›› Issue (6) : 586-597. DOI: 10.15982/j.issn.2096-9287.2023.20230120

Terrain Reconstruction for Lunar South Pole Region Based on Confidence-Guided Stereo Matching

  • YOU Qionghua1,2, YE Zhen1,2, TONG Xiaohua1,2, XU Yusheng1,2, LIU Shijie1,2, XIE Huan1,2
Author information +
History +

Abstract

The lunar South Pole region’s limited illumination, extensive shadowed regions, and homogenous surface features with weak textures pose significant challenges to stereoscopic image matching and 3D terrain reconstruction. To address these issues, an Efficient Confidence-guided Stereo Matching (ECSM) algorithm was proposed. This algorithm improved matching precision and efficiency by assessing the confidence of non-support points, updating the support point dataset, constructing a triangulated mesh, and recalculating disparities within triangle vertices based on their confidence levels. On this basis, a photogrammetric method for lunar 3D terrain reconstruction was established. High-resolution image data from the Lunar Reconnaissance Orbiter’s Narrow Angle Camera was utilized for validation experiments conducted in the vicinity of the Shackleton crater within the lunar South Pole region. Qualitative and quantitative analyses of disparity maps and Digital Elevation Model (DEM) generated from different stereo matching algorithms demonstrated the reliability of the proposed algorithm in regions with weak and repetitive textures. Comparative analyses with the German Aerospace Center’s DEM and NASA’s Lunar Orbiter Laser Altimeter DEM (LDEM) for the same region revealed significant consistency in elevation and slope information, affirming the practicality and effectiveness of the proposed method. This study provides a methodological foundation for landing site selection for lunar South Pole explorations.

Keywords

lunar south pole / terrain reconstruction / stereo matching / confidence guide

Cite this article

Download citation ▾
YOU Qionghua, YE Zhen, TONG Xiaohua, XU Yusheng, LIU Shijie, XIE Huan. Terrain Reconstruction for Lunar South Pole Region Based on Confidence-Guided Stereo Matching. Journal of Deep Space Exploration, 2023, 10(6): 586‒597 https://doi.org/10.15982/j.issn.2096-9287.2023.20230120

References

[1] 饶炜,方越,彭松,等. 月球南极探测着陆区选址方法[J]. 深空探测学报 (中英文),2022,9(6):571-578.
RAO W,FANG Y,PENG S,et al. Landing site selection method of lunar south pole region[J]. Journal of Deep Space Exploration,2022,9(6):571-578.
[2] PAIGE D A,SIEGLER M A,ZHANG J A,et al. Diviner lunar radiometer observations of cold traps in the Moon’s south polar region[J]. Science,2010,330(6003):479-482.
[3] SCHORGHOFER N,WILLIAMS J P,MARTINEZ-CAMACHO J,et al. Carbon dioxide cold traps on the Moon[J]. Geophysical Research Letters,2021,48(20):e2021GL095533.
[4] 王赤,林杨挺,裴照宇,等. 月球科研站的关键科学问题[J]. 中国科学基金,2022,36(6):830-840.
WANG C,LIN Y T,PEI Z Y,et al. Key scientific questions related to the lunar research station[J]. Bulletin of National Natural Science Foundation of China,2022,36(6):830-840.
[5] BERNHARDT H,ROBINSON M,BOYD A. Geomorphic map and science target identification on the Shackleton-de Gerlache ridge[J]. Icarus,2022,379:114963.
[6] KRING D A, BARRETT N, BOAZMAN S, et al. Artemis III EVA opportunities in the vicinity of the lunar south pole on the rim of Shackleton Crater[R]. Tucson, Arizona, USA: Lunar and Planetary Laboratory, University of Arizona, 2020.
[7] 柳思聪,童小华,刘世杰,等. “天问一号”着陆区遥感形貌建模与制图分析[J]. 深空探测学报(中英文),2022,9(3):338-347.
LIU S C,TONG X H,LIU S J,et al. Topography modeling,mapping and analysis of China’s first Mars mission Tianwen-1 landing area from remote sensing images[J]. Journal of Deep Space Exploration,2022,9(3):338-347.
[8] SCHOLTEN F,OBERST J,MATZ K D,et al. GLD100:the near‐global lunar 100 m raster DTM from LROC WAC stereo image data[J]. Journal of Geophysical Research:Planets,2012,117: E00H17.
[9] BARKER M,MAZARICO E,NEUMANN G,et al. A new lunar digital elevation model from the Lunar Orbiter Laser Altimeter and SELENE terrain camera[J]. Icarus,2016,273:346-355.
[10] LI C L, REN X, LIU J J, et al. A new global and high resolution topographic map product of the Moon from Chang'E-2 image data[C]//Proceedings of 46th Annual Lunar and Planetary Science Conference. Woodlands,TX,USA:NASA, 2015 (1832):1638.
[11] OBERST J, SCHOLTEN F, MATZ K D, et al. Apollo 17 landing site topography from LROC NAC stereo data—first analysis and results[C]//Proceedings of 41st Annual Lunar and Planetary Science Conference. Woodlands, TX, USA: NASA, 2010 (1533): 2051.
[12] DI K,JIA M,XIN X,et al. High-resolution large-area digital orthophoto map generation using LROC NAC images[J]. Photogrammetric Engineering & Remote Sensing,2019,85(7):481-491.
[13] ZHANG L Y, CAI F D, WANG J J, et al. The SGM algorithm based on census transform for binocular stereo vision[C]//Proceedings of 2022 International Conference on Machine Learning and Knowledge Engineering (MLKE). Guilin,China:IEEE, 2022.
[14] YANG S,LEI X,LIU Z,et al. An efficient local stereo matching method based on an adaptive exponentially weighted moving average filter in SLIC space[J]. IET Image Processing,2021,15(8):1722-1732.
[15] 彭嫚,邸凯昌,刘召芹. 基于自适应马尔科夫随机场的深空探测影像密集匹配[J]. 遥感学报,2014,18(1):77-89.
PENG M,DI K,LIU Z. Adaptive Markov random field model for dense matching of deep space stereo images[J]. J Remote Sensing,2014,18(1):77-89.
[16] YE L,PENG M,DI K,et al. Lunar terrain reconstruction from multi-view lroc nac images based on semi-global matching in object space[J]. The International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences,2020,43:1177-1183.
[17] GUO Y Q,GU M,XU Z D. Research on the improvement of semi-global matching algorithm for binocular vision based on lunar surface environment[J]. Sensors,2023,23(15):6901.
[18] GEIGER A, ROSER M, URTASUN R. Efficient large-scale stereo matching[C]//Proceedings of Asian conference on computer vision. Berlin,Heidelberg:Springer Berlin Heidelberg,2010.
[19] 曾兴国,左维,李春来,等. 中国月球地形制图研究进展[J]. 武汉大学学报 (信息科学版),2022,47(4):570-578.
ZENG X G,ZUO W,LI C L. Review on progress of lunar topographic mapping in China[J]. Geomatics and Information Science of Wuhan University,2022,47(4):570-578.
[20] 邸凯昌,刘斌,刘召芹,等. 月球遥感制图回顾与展望[J]. 遥感学报,2016,20(5):1230-1242.
DI K C,LIU B,LIU Z Q,et al. Review and prospect of lunar mapping using remote sensing data[J]. Journal of Remote Sensing,2016,20(5):1230-1242.
[21] 徐青,耿迅. 地外天体形貌测绘研究现状与展望[J]. 深空探测学报(中英文),2022,9(3):300-310.
XU Q,GENG X. Recent advances and prospects in extraterrestrial planets mapping[J]. Journal of Deep Space Exploration,2022,9(3):300-310.
[22] GADDIS L, ANDERSON J, BECKER, K, et al. An overview of the Integrated Software for Imagers and Spectrometers (ISIS)[C]//Proceedings of 28th Annual Lunar and Planetary Science Conference. Houston,TX,USA:NASA,1997.
[23] WU B,HU H,GUO J. Integration of Chang'E-2 imagery and LRO laser altimeter data with a combined block adjustment for precision lunar topographic modeling[J]. Earth and Planetary Science Letters,2014,391:1-15.
[24] DE FRANCHIS C,MEINHARDT-LLOPIS E,MICHEL J,et al. An automatic and modular stereo pipeline for pushbroom images[J]. ISPRS Annals of the Photogrammetry,Remote Sensing and Spatial Information Sciences,2014,2:49-56.
[25] ZHANG Z,DERICHE R,FAUGERAS O,et al. A robust technique for matching two uncalibrated images through the recovery of the unknown epipolar geometry[J]. Artificial Intelligence,1995,78(1-2):87-119.
[26] NEFIAN A V, HUSMANN K, BROXTON M, et al. A Bayesian formulation for sub-pixel refinement in stereo orbital imagery [C]//Proceedings of 2009 16th IEEE International Conference on Image Processing (ICIP). Cairo,Egypt:IEEE,2009.
[27] HU X Y, MORDOHAI P. Evaluation of stereo confidence indoors and outdoors[C]//Proceedings of 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco,CA,USA:IEEE,2010.
[28] LI R,DI K,HOWARD A B,et al. Rock modeling and matching for autonomous long-range Mars rover localization[J]. Journal of Field Robotics,2007,24(3):187-203.
[29] WU B,ZHANG Y,ZHU Q. Integrated point and edge matching on poor textural images constrained by self-adaptive triangulations[J]. ISPRS journal of photogrammetry and remote sensing,2012,68:40-55.
[30] ROBINSON M S,BRYLOW S M,TSCHIMMEL M,et al. Lunar Reconnaissance Orbiter Camera (LROC) instrument overview[J]. Space Science Reviews,2010,150(1-4):81-124.
[31] VONDRAK R,KELLER J,CHIN G,et al. Lunar Reconnaissance Orbiter (LRO):observations for lunar exploration and science[J]. Space Science Reviews,2010,150(1):7-22.
[32] 贾波,章毓晋,林行刚. 视差图误差检测与校正的通用快速算法[J]. 清华大学学报:自然科学版,2000,40(1):28-31.
JIA B,ZHANG Y J,LIN X G. General and fast algorithm for disparity error detection and correction[J]. Journal of Tsinghua University (Science and Technology),2000,40(1):28-31.
[33] BEYER R A,ALEXANDROV O,MCMICHAEL S. The ames stereo pipeline:NASA's open source software for deriving and processing terrain data[J]. Earth and Space Science,2018,5(9):537-548.
[34] ZABIH R,WOODFILL J. Non-parametric local transforms for computing visual correspondence[C]//Proceedings of Computer Vision—ECCV'94:Third European Conference on Computer Vision Stockholm. Sweden:Springer Berlin Heidelberg,1994:151-158.
[35] ROSIEK M R, THOMAS O, HOWINGTON-KRAUS E, et al. Lunar south pole digital elevation models from lunar reconnaissance orbiter narrow angle camera[C]//Proceedings of 44th Annual Lunar and Planetary Science Conference. Woodlands,TX,USA:NASA,2013.
PDF(4014 KB)

Accesses

Citations

Detail

Sections
Recommended

/