PDF(1361 KB)
Mission Analysis and Spacecraft Design of Chang’E-7
- YU Houman1, RAO Wei2, ZHANG Yiyuan2, XING Zhuoyi2
Author information
+
1. China Academy of Space Technology,Beijing 100094,China;
2. Institute of Spacecraft System Engineering,Beijing 100094,China
Show less
History
+
Received |
Revised |
Published |
28 Aug 2023 |
31 Oct 2023 |
25 Jan 2024 |
Issue Date |
|
25 Jan 2024 |
|
Abstract
In recent years, international lunar exploration has mainly focused on the south pole of the Moon. Chang’E-7 (CE-7) mission, through the development of orbiter, lander, rover and hopper, will achieve a comprehensive exploration of the lunar south pole including surrounding, landing, moving, and leaping. The harsh lighting conditions, terrain conditions, and temperature conditions at the lunar south pole have brought many challenges to the design of the spacecraft. CE-7 spacecraft has broken through a series of barriers with advanced technologies including high-precision fixed-point soft landing on complex terrain, lunar surface leaping, lunar landing and walking, global perception and mission planning, and fidelity sampling of water ice and volatiles. It has laid a solid technical foundation for the smooth implementation of the mission and the subsequent aerospace cause in our country.
Keywords
CE-7 /
spacecraft /
mission overview /
lunar south pole
Cite this article
Download citation ▾
YU Houman, RAO Wei, ZHANG Yiyuan, XING Zhuoyi.
Mission Analysis and Spacecraft Design of Chang’E-7. Journal of Deep Space Exploration, 2023, 10(6): 567‒576 https://doi.org/10.15982/j.issn.2096-9287.2023.20230119
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
This is a preview of subscription content, contact
us for subscripton.
References
[1] SPEYERER E J,ROBINSON M S. Persistently illuminated regions at the lunar poles:ideal sites for future exploration[J]. Icarus,2013,222(1):122-136.
[2] 焦维新. 月球南极探测的态势与科学目标[J]. 国际太空,2022(10):4-11.
[3] 王立武,郭东文,张章,等. 美国宇航局Artemis月球探测计划简介[J]. 航天返回与遥感,2020,41(5):1-12.
WANG L W,GUO D W,ZHANG Z,et al. Introduction to NASA’s Artemis lunar exploration program[J]. Spacecraft Recovery & Remote Sensing,2020,41(5):1-12.
[4] 吴伟仁,刘继忠,唐玉华,等. 中国探月工程[J]. 深空探测学报(中英文),2019,6(5):405-416.
WU W R,LIU J Z,TANG Y H,et al. China lunar exploration program[J]. Journal of Deep Space Exploration,2019,6(5):405-416.
[5] 冯华. 吴伟仁:探月工程四期还将实施3次任务[J]. 国防科技工业,2022(3):17.
[6] 于登云,吴学英,吴伟仁. 中国探月工程技术发展综述[J]. 深空探测学报(中英文),2016,3(4):307-314.
YU D Y,WU X Y,WU W R. Review of technology development for Chinese Lunar Exploration Program[J]. Journal of Deep Space Exploration,2016,3(4):307-314.
[7] 吴伟仁,于登云. 深空探测发展与未来关键技术[J]. 深空探测学报(中英文),2014,1(1):5-17.
WU W R,YU D Y. Development of deep space exploration and its future key technologies[J]. Deep Space of Exploration,2014,1(1):5-17.
[8] 吴伟仁. 月球与深空探测的关键技术[C]//中国深空探测第六届学术年会. 长沙:中国深空探测第六届学术年会,2008.
[9] 裴照宇,刘继忠,王倩,等. 月球探测进展与国际月球科研站[J]. 科学通报,2020,65(24):2577-2586.
PEI Z Y,LIU J Z,WANG Q,et al. Overview of lunar exploration and International lunar research station[J]. Chinese Science Bulletin,2020,65(24):2577-2586.
[10] 王超,彭祺擘,王慎泉,等. 月面原位资源补给站概念方案设计[J]. 深空探测学报(中英文),2022,9(6):596-605.
WANG C,PENG Q B,WANG S Q,et al. Conceptual design of lunar surface in-situ resource supply station[J]. Journal of Deep Space Exploration,2022,9(6):596-605.
[11] 王超,张晓静,姚伟. 月球极区水冰资源原位开发利用研究进展[J]. 深空探测学报(中英文),2020,7(3):241-247.
WANG C,ZHANG X J,YAO W. Reseach prospects of lunar polar water ice resource in-situ utilization[J]. Journal of Deep Space Exploration,2020,7(3):241-247.
[12] ANAND M,CRAWFORD L A,BALAT-PICHELIN M,et al. A brief review of chemical and mineralogical resources on the Moon and likely initial In Situ Resource Utilization(ISRU)applications[J]. Planetary & Space Science,2012,74(1):42-48.
[13] WATSON K,MURRAY B C,BROWN H. The behavior of volatiles on the lunar surface[J]. Journal of Geophysical Research,1961,66(9):3033-3045.
[14] STACY N J S,CAMPBELL D B,FORD P G. Arecibo radar mapping of the lunar poles:a search for ice deposits[J]. Science,1997,276(5318):1527-1530.
[15] 郑永春,王世杰,刘春茹,等. 月球水冰探测进展[J]. 地学前缘,2004,11(2):573-578.
ZHENG Y C,WANG S J,LIU C R,et al. Review on exploration of water ice on the Moo[J]. Earth Science Frontiers ,2004,11(2):573-578.
[16] NOZETTE S,LICHTENBERG C L,SPUDIS P,et al. The Clementine bistatic radar experiment[J]. Science,1996,274(5292):1495-1498.
[17] SPUDIS P D,BUSSEY D B J,BUTLER B,et al. The Mini-SAR imaging radar on the Chandrayaan-1 mission to the Moon[C]//Proceedings of 40th Lunar and Planetary Science Conference. Woodlands:[s. n.],2009.
[18] SPUDIS P D,BUSSEY D B J,BALOGA S M. Initial results for the north pole of the Moon from Mini-SAR,Chandrayaan-1 mission[J]. Geophysical Research Letters,2010,37:1-6.
[19] PIETERS C M,GOSWAMI J N,CLARK R N,et al. Character and spatial distribution of OH/H2O on the surface of the Moon seen by M3 on Chandrayaan-1[J]. Science,2009,326(5952):568-572.
[20] THOMSON B J,BUSSEY D B J,NEISH C D,et al. An upper limit for ice in Shackleton crater as revealed by LRO Mini-RF orbital radar[J]. Geophysical Research Letters,2012,39:1-4.
[21] FELDMAN W C,MAURICE S,LAWRENCE D J,et al. Evidence for water ice near the lunar poles[J]. Journal of Geophysical Research:Planets (1991—2012),2001,106(E10):23231-23251.
[22] SCHULTZ P H,HERMALYN B,COLAPRETE A,et al. The LCROSS cratering experiment[J]. Science,2010,330(6003):468-472.
[23] LI S,LUCEY P G,MILLIKEN R E,et al. Direct evidence of surface exposed water ice in the lunar polar regions[J]. Proceedings of the National Academy of Sciences,2018,115(36):8907.
[24] GLADSTONE G R,HURLEY D M,RETHERFORD K D,et al. LRO-LAMP observations of the LCROSS impact plume[J]. Science,2010,330:472-476.
[25] 程安云,王世杰,李雄耀,等. 月球南北两极研究进展与发展趋势[J]. 地球物理学进展,2007,22(4):1070-1074.
CHENG A Y,WANG S A,LI X Y,et al. Researches on lunar poles:advances and trends[J]. Progress in Geophysics,2007,22(4):1070-1074.
[26] JIA Y,ZHANG Z,QIN L,et al. Research of lunar water-ice and exploration for China’s future lunar water-ice exploration[J]. Space:Science & Technology,2023,3:0026.
[27] HAYNE O P,HENDRIX A,SEFTON-NASH E,et al. Evidence for exposed water ice in the Moon’s south polar regions from Lunar Reconnaissance Orbiter ultraviolet albedo and temperature measurements[J]. Icarus,2015,255:58-69.
[28] 杜宇,盛丽艳,张熇,等. 月球水冰赋存形态分析及原位探测展望[J]. 航天器环境工程,2019,36(6):607-614.
DU Y,SHENG Y L,ZHANG H,et al. Analysis of the occurrence mode of water ice on the moon and the prospect of in-situ lunar exploration[J]. Spacecraft Environment Engineering,2019,36(6):607-614.
[29] LOSIAK A,WILHELMS D E,BYRNE C J,et al. A new lunar impact crater database[C]//Proceedings of 40th Annual Lunar and Planetary Science Conference. Houston: Lunar and Planetary Institute,2009.
[30] DZABA A,MUCASEY E,ABRAHAM A,et al. State -feedback control of the Space Hawk Earth - based lunar hopper[C]//Proceedings of 2013 International Conference on Unmanned Aircraft Systems ICUAS). Atlanta:IEEE,2013.
[31] 张弘,盛丽艳,马继楠,等. 月球极区着陆环境特性对比及探测建议[J]. 航天器环境工程,2019,36(6):615-621.
ZHANG H,SHENG Y L,MA J N,et al.
Comparison of the landing environments in lunar poles and some suggestions for probing[J]. Spacecraft Environment Engineering,2019,36(6):615-621.
[32] 饶炜,方越,彭松,等. 月球南极探测着陆区选址方法[J]. 深空探测学报(中英文),2022,9(6):571-578.
RAO W,FANG Y,PENG S,et al. Landing site selection method of lunar south pole region[J]. Journal of Deep Space Exploration,2022,9(6):571-578.
[33] DIEGO D R,BEN B,JOSHUA T,et al. Cahill characterization of potential landing sites for the European Space Agency’s Lunar Lander project[J]. Planetary and Space Science,2012,74:224-246.
[34] 刘德赟,王露斯,孙启臣,等. 月球极区冻土模拟月壤钻进试验研究[J]. 科学技术与工程,2018,18(25):256-261.
LIU D Y,WANG L S,SUN Q C,et al. Drilling experiment of simulated icy soil of lunar polar region[J]. Science Technology and Engineering ,2018,18(25):256-261.
[35] 刘君巍,汪恩良,田野,等. 月壤水冰组构模拟及力学特性测试分析[J]. 深空探测学报(中英文),2022,9(2):134-140.
LIU J W,WANG E L,TIAN Y,et al. Fabric simulation and mechanical characteristics test and analysis of icy lunar regolith[J]. Journal of Deep Space Exploration,2022,9(2):134-140.