Shovel Design and Testing for Micro-Quantitative Sampling of Shallow Moon Soil

DUAN Zhangqing1, ZHANG Weiwei2, WANG Chu3, TIAN Ye1, GONG Xuejian3, JIANG Shengyuan2, ZHANG Yunfeng4

PDF(2335 KB)
PDF(2335 KB)
Journal of Deep Space Exploration ›› 2023, Vol. 10 ›› Issue (6) : 608-617. DOI: 10.15982/j.issn.2096-9287.2023.20230118
Topic: Technology of Landing Exploration in Lunar South Polar

Shovel Design and Testing for Micro-Quantitative Sampling of Shallow Moon Soil

  • DUAN Zhangqing1, ZHANG Weiwei2, WANG Chu3, TIAN Ye1, GONG Xuejian3, JIANG Shengyuan2, ZHANG Yunfeng4
Author information +
History +

Abstract

In situ high-precision analyses of volatile abundance in lunar soil in the lunar polar regions require micro-quantification of test samples. In this paper, a sampling shovel scheme based on the end of a robotic arm was proposed. A shallow lunar soil profile was constructed by progressive shovel digging, micro-quantitative collection of lunar soil samples at fixed depths was achieved through the configuration of a fixed-capacity sampling chamber, and the shovel teeth could be used to scrape the debris formed by the water ice of the lunar soil for sample collection in extreme cases. To verify the feasibility of the sampling scheme, a simulated lunar soil profile shovel-digging sampling efficiency test platform was built, and progressive shovel-digging, fixed-capacity micro-sampling, and vibratory sampling tests were carried out. These tests show that the sampling shovel has the capability of constructing a 130 mm deep profile and a 200 ± 30 mg micro-quantitative sampling function. The research results provide a feasible scheme for the exploration and analysis of China’s lunar soil sampling in the polar regions of the Moon.

Keywords

polar regions of the moon / cutaway shovel digging / sampling shovel / micro-quantification

Cite this article

Download citation ▾
DUAN Zhangqing, ZHANG Weiwei, WANG Chu, TIAN Ye, GONG Xuejian, JIANG Shengyuan, ZHANG Yunfeng. Shovel Design and Testing for Micro-Quantitative Sampling of Shallow Moon Soil. Journal of Deep Space Exploration, 2023, 10(6): 608‒617 https://doi.org/10.15982/j.issn.2096-9287.2023.20230118

References

[1] ZOU Y,LIU Y,JIA Y. Overview of China's upcoming Chang'E series and the scientific objectives and payloads for Chang'E-7 mission[C]//Proceedings of 51st Annual Lunar and Planetary Science Conference. Houston:AIAA,2020 (2326):1755.
[2] 季节,张伟伟,杨旭,等. 月球极区水冰采样探测技术综述[J]. 深空探测学报(中英文),2022,9(2):101-113.
JI J,ZHANG W W,YANG X,et al. Overview of water ice sampling and detectiontechniques in the lunar polar region[J]. Journal of Deep Space Exploration,2022,9(2):101-113.
[3] 张伟伟,姜生元,李鹏,等. 月壤剖面锥型螺旋刃成孔钻头设计[J]. 宇航学报,2016,37(12):1347-1355.
ZHANG W W,JIANG S Y,LI P,et al. Design of a screw-conedrill for lunar regolith drilling mission[J]. Journal of Astronautics. 2016,37(12):1347-1355.
[4] 邓湘金,郑燕红,金晟毅,等. 嫦娥五号探测器月面铲挖采样前后状态变化分析[J]. 宇航学报,2021,42(8):1004-1014.
DENG X J,ZHENG Y H,JIN S Y,et al. Changes in sampling sites before and after digging in Chang’e-5 mission[J]. Journal of Astronautics,2021,42(8):1004-1014.
[5] 姚猛,郑燕红,赵志晖,等. 一种月表采样器合理铲挖深度的研究[J]. 航天器工程,2017,26(3):50-56.
YAO M,ZHENG Y H,ZHAO Z H,et al. Research on reasonable excavation depth for lunar regolith sampler[J]. Spacecraft Engineering,2017,26(3):50-56.
[6] 姜水清,刘荣凯,林云成,等. 铲挖式表层月壤采样器设计与试验[J]. 中国空间科学技术,2019,39(1):49-58.
JIANG S Q,LIU R K,LIN Y C,et al. Design and test of a sampler for lunar surface regolith[J]. Chinese Space Science and Technology,2019,39(1):49-58.
[7] PAULSEN G,MANK Z,WANG A,et al. The regolith and ice drill for exploration of new terrains (TRIDENT):a one-meter drill for the lunar resource prospector mission[C]//Proceedings of 44th Aerospace Mechanisms Symposium. Cleveland:NASA ,2018.
[8] LITVAK M L,KOZLOVA T O,ILYIN A G,et al. Ground-based testing of the lunar manipulator complex of the Luna-25 project[J]. Solar System Research,2021,55:605-619.
[9] LITVAK M,KOZLOVA T,ILYIN A,et al. Luna–25 robotic arm:results of experiment with analog of lunar regolith in lunar like conditions[J]. Acta Astronautica,2022,200:282-290.
[10] SEFTON-NASH E,FISACKERLY R,Fisackerly R,et al. The ESA PROSPECT payload for Luna 27:development status[EB/OL]. [2021-7-21](2023-8-17). https://meetingorganizer.copernicus.org/EPSC2021/ EPSC2021-291.html.
[11] 崔建国,田野,刘君巍,等. 月壤临界尺度颗粒运移特性对钻采阻力影响研究[J]. 岩土工程学报,2021,43(9):1715-1723.
CUI J G,TIAN Y,LIU J W,et al. Influence of particle transportcharacteristics on drilling resistance of lunar soil at critical scale[J]. Chinese Journal of Geotechnical Engineering,2021,43(9):1715-1723.
[12] ROBERT J G,BRANT C W,MARTY A G. Development of a high fidelity lunar soil simulant[J]. Space and Applications International Forum,2008(6):213-220.
[13] HONNIBALL C I,LUCEY P G,LI S,et al. Molecular water detected on the sunlit Moon by SOFIA[J]. Nature Astronomy,2021,5(2):121-127.
[14] 李雄耀,魏广飞,曾小家,等. 极区月壤和水冰形成演化机制及物理特性研究[J]. 深空探测学报(中英文),2022,9(2):123-133.
LI X Y,WEI G F,ZENG X J,et al. Review of the lunar regolith and water ice on the poles of the Moon[J]. Journal of Deep Space Exploration,2022,9(2):123-133.
[15] LAWRENCE D J. A tale of two poles:toward understanding the presence,distribution,and origin of volatiles at the polar regions of the Moon and Mercury:polar volatiles at the Moon and Mercury[J]. Journal of Geophysical Research:Planets,2017,122(1):21-52.
[16] BASU A,RIEGSECKER S. Modal mineralogic distribution in theregolith at Apollo landing sites[J]. Journal of Geophysical Research:Planets,2000,105(E2):4361-4368.
[17] CARRIER III W D. Particle size distribution of lunar soil[J]. Journal of Geotechnical and Geoenvironmental Engineering,2003,129(10):956-959.
[18] ZENG X W,HE C M,WILKINSON A. Geotechnical properties of NT-LHT-2M lunar highland simulant[J]. Journal of Aerospace Engineering,2010,23(4):213-218.
[19] HEIKEN G,VANIMAN D S,FRENCH B M,et al. Lunar sourcebook:a user’s guide to the Moon[M]. Cambridge:Cambridge University Press,1991.
[20] 赵宇,季节,田野,等. 含冰模拟月壤切削负载试验研究[J]. 深空探测学报(中英文),2022,9(6):606-616.
ZHAO Y,JI J,TIAN Y,et al. Experimental study on cutting load of simulated lunar soilcontaining ice[J]. Journal of Deep Space Exploration,2022,9(6):606-616.
PDF(2335 KB)

Accesses

Citations

Detail

Sections
Recommended

/