Research Progress in Asteroid Defense On-Orbit Disposal Technology

WU Weiren1,2, TANG Yuhua1,2, LI Mingtao3,4

PDF(1311 KB)
PDF(1311 KB)
Journal of Deep Space Exploration ›› 2023, Vol. 10 ›› Issue (4) : 345-356. DOI: 10.15982/j.issn.2096-9287.2023.20230111
Special Issue:Monitoring of and Desense Against Near-Earth Asteroids
Special Issue:Monitoring of and Desense Against Near-Earth Asteroids

Research Progress in Asteroid Defense On-Orbit Disposal Technology

  • WU Weiren1,2, TANG Yuhua1,2, LI Mingtao3,4
Author information +
History +

Abstract

Near-Earth asteroid impact is a major catastrophic threat facing human society. Planetary defense is an inevitable requirement for building a community with a shared future for mankind and continuing human civilization. Implementing on-orbit disposal is the best way to prevent and resolve the risk of near-Earth asteroid impact. This paper systematically combed the development status of near-Earth asteroid defense on-orbit disposal technologies,comprehensively summarized the key technologies,advantages and disadvantages,and application scenarios of nuclear explosion,kinetic impact,gravitational traction,ion beam,laser ablation,tug,mass driver,surface spraying and other on-orbit disposal technologies,and puts forward suggestions for the development of near-Earth asteroid defense on-orbit disposal technology.

Keywords

near-Earth asteroids / planetary defense / on-orbit disposal / kinetic impact / on-orbit demonstration

Cite this article

Download citation ▾
WU Weiren, TANG Yuhua, LI Mingtao. Research Progress in Asteroid Defense On-Orbit Disposal Technology. Journal of Deep Space Exploration, 2023, 10(4): 345‒356 https://doi.org/10.15982/j.issn.2096-9287.2023.20230111

References

[1] O'KEEFE J D,AHRENS T J. Impact production of C02 by the Cretaceous/Tertiary extinction bolide and the resultant heating of the Earth[J]. Nature,1989,338(6212):247-249.
[2] PINTER N,SCOTT A C,DAULTON T L,et al. The Younger Dryas impact hypothesis:a requiem[J]. Earth-Science Reviews,2011,106(3-4):247-264.
[3] 郭安宁,赵乘程,张向红,等. 历史记载亡人最多的明朝甘肃庆阳陨石雨事件[J]. 地震工程学报,2015,37(1):119.GUO A N,ZHOA C C,ZHANG X H,et al. The Meteorite shower of Ming dynasty in Qingyang,Gansu-an event causing largest number of deadth in historical records[J]. Journal of Earthquake Engineering,2015,37(1):119
[4] LONGO G. The Tunguska event[A]. Comet/asteroid impacts and human society:an interdisciplinary approach[M]. Berlin,Heidelberg:Springer,2007:303-330.
[5] FOSCHINI L. A solution for the Tunguska event[J]. Astronomy and Astrophysics,1998:342:L1.
[6] GLADYSHEVA O. The Tunguska event[J]. Icarus,2020,348:113837.
[7] BOROVIČKA J,SPURNÝ P,BROWN P,et al. The trajectory,structure and origin of the Chelyabinsk asteroidal impactor[J]. Nature,2013,503(7475):235-237.
[8] OZAWA S,MIYAHARA M,OHTANI E,et al. Jadeite in Chelyabinsk meteorite and the nature of an impact event on its parent body[J]. Scientific Reports,2014,4(1):5033.
[9] REDDY V,SANCHEZ J A,BOTTKE W F,et al. Chelyabinsk meteorite explains unusual spectral properties of Baptistina asteroid family[J]. Icarus,2014,237:116-130.
[10] 龚自正,李明,陈川,等. 小行星监测预警、安全防御和资源利用的前沿科学问题及关键技术[J]. 科学通报,2020,65(5):346-372.GONG Z Z,LI M,CHEN C,et al. The frontier science and key technologies of asteroid monitoring and early warning,security defense and resource utilization[J]. Chinese Science Bulletin,2020,65(5):346-372.
[11] 吴伟仁,龚自正,唐玉华,等. 近地小行星撞击风险应对战略研究[J]. 中国工程科学,2022,24(2):140-151.WU W R,GONG Z Z,TANG Y H,et al. Response to risk of near-Earth asteroid impact[J]. Strategic Study of CAE,2022,24(2):140-151.
[12] ANTHONY N,EMAMI M R. Asteroid engineering:the state-of-the-art of near-Earth asteroids science and technology[J]. Progress in Aerospace Sciences,2018,100:1-17.
[13] IVASHKIN V V,SMIRNOV V V. An analysis of some methods of asteroid hazard mitigation for the Earth[J]. Planetary and Space Science,1995,43(6):821-825.
[14] AHRENS T J,HARRIS A W. Deflection and fragmentation of near-Earth asteroids[J]. Nature,1992,360(6403):429-433.
[15] LU E T,LOVE S G. Gravitational tractor for towing asteroids[J]. Nature,2005,438(7065):177-178.
[16] SCHWEICKART R,CHAPMAN C,DURDA D,et al. Threat mitigation:the gravity tractor[EB/OL]. (2006-8-15)[2023-7-12].https://arxiv.org/abs/physics/0608157.
[17] BOMBARDELLI C,PELÁEZ J. Ion beam shepherd for asteroid deflection[J]. Journal of Guidance,Control,and Dynamics,2011,34(4):1270-1272.
[18] SCHWEICKART R L,LU E T,HUT P,et al. The asteroid tugboat[J]. Scientific American,2003,289(5):54-61.
[19] GIBBINGS A,VASILE M,HOPKINS J M,et al. Potential of laser-induced ablation for future space applications[J]. Space Policy,2012,28(3):149-153.
[20] GIBBINGS A L. Laser ablation for the deflection,exploration and exploitation of near Earth asteroids[D]. Scotland:University of Glasgow,2014.
[21] LI M,WANG Y,WANG Y,et al. Enhanced kinetic impactor for deflecting large potentially hazardous asteroids via maneuvering space rocks[J]. Scientific Reports,2020,10(1):1-9.
[22] LUBIN P,COHEN A N. Asteroid interception and disruption for terminal planetary defense[J]. Advances in Space Research,2023,71(3):1827-1839.
[23] RIVKIN A S,CHENG A F. Planetary defense with the Double Asteroid Redirection Test (DART) mission and prospects[J]. Nature Communications,2023,14(1):1003.
[24] National Research Council. Defending planet Earth:near-Earth-object surveys and hazard mitigation strategies[M]. US:National Academies Press,2010.
[25] ADAMS R B,ALEXANDER R,BONEMETTI J,et al. Survey of technologies relevant to defense from near-Earth objects:20050081838[R]. USA:NASA,2004.
[26] WIE B. Astrodynamic fundamentals for deflecting hazardous near-earth objects[C]//Proceedings of 60th International Astronautical Congress. Deajeon:IAC,2009.
[27] LI M,WANG K. Progress of planetary defense research in China[J]. Chinese Journal of Space Science,2022,42(4):830-835.
[28] BELTON M J S. About deflecting asteroids and comets[A]. Mitigation of hazardous comets and asteroids[M]. Cambridge:Cambridge University Press,2004:113-140.
[29] DEARBORN D. 21st century steam for asteroid mitigation[C]//Proceedings of 2004 Planetary Defense Conference:Protecting Earth from Asteroids. Frascati,Roma,Italy:IAA,2004:1427.
[30] SYAL M B,DEARBORN D S P,SCHULTZ P H. Limits on the use of nuclear explosives for asteroid deflection[J]. Acta Astronautic,2013,90(1):103-111.
[31] WIE B,ZIMMERMAN B,LYZHOFT J,et al. Planetary defense mission concepts for disrupting/pulverizing hazardous asteroids with short warning time[J]. Astrodynamics,2017,1:3-21.
[32] DEARBORN D S,BRUCK M. Limits on the use of nuclear explosives for asteroid deflection[C]//Proceedings of Planetary Defense Conference. Bucharest,Romania:Lawrence Livermore National Laboratory,2011.
[33] BARBEE B W,FOWLER W T. Spacecraft mission design for the optimal impulsive deflection of hazardous Near-Earth Objects (NEOs) using nuclear explosive technology[C]//Proceedings of Planetary Defense Conference. Washington DC:[s.n.],2007.
[34] KOPLOW D A. Legal aspects of the use of nuclear explosive devices in planetary defence[M]. Leiden:Brill Nijhoff,2021:226-245.
[35] BARBEE B,ABELL P A,BINZEL R P,et al. Future spacecraft missions for planetary defense preparation[J]. Bulletin of the AAS,2021,53(4):1-8.
[36] SMPAG. Planetary defense roadmap:current mitigation-related research and priorities for future actions[R]. USA:NASA,2023.
[37] DALY R T,ERNST C M,BARNOUIN O S,et al. Successful kinetic impact into an asteroid for planetary defence[J]. Nature,2023,616(7957):443-447.
[38] SYAL M B,OWEN J M,MILLER P L. Deflection by kinetic impact:sensitivity to asteroid properties[J]. Icarus,2016,269:50-61.
[39] CHENG A F,AGRUSA H F,BARBEE B W,et al. Momentum transfer from the DART mission kinetic impact on asteroid Dimorphos[J]. Nature,2023,616(7957):457-460.
[40] CHENG A F,STICKLE A M,FAHNESTOCK E G,et al. DART mission determination of momentum transfer:model of ejecta plume observations[J]. Icarus,2020,352:113989.
[41] JUTZI M,MICHEL P. Hypervelocity impacts on asteroids and momentum transfer I. Numerical simulations using porous targets[J]. Icarus,2014,229:247-253.
[42] A'HEARN M F,BELTON M J S,DELAMERE W A,et al. Deep impact:excavating comet Tempel 1[J]. Science,2005,310(5746):258-264.
[43] HARKER D E,WOODWARD C E,WOODEN D H. The dust grains from 9P/Tempel 1 before and after the encounter with Deep Impact[J]. Science,2005,310(5746):278-280.
[44] LI J Y,HIRABAYASHI M,FARNHAM T L,et al. Ejecta from the DART-produced active asteroid Dimorphos[J]. Nature,2023,616(7957):452-456.
[45] REICHERT S. DART hits the bullseye[J]. Nature Physics,2023,19(4):471.
[46] National Academies of Sciences,Engineering,and Medicine. Origins,worlds,and life:a decadal strategy for planetary science and astrobiology 2023-2032[R].[S. l]:National Academies Press,2022.
[47] FALKE A,ATKINSON K,CHAPUY M. Hijacking a satellite for short-warning asteroid deflection-FastKD mission,design and implementation[C]//Proceedings of 7th IAA Planetary Defense Conference. Vienna,Austria:IAA,2021.
[48] PASQUALE A,LAVAGNA M,RENK F. Cislunar departure exploitation for planetary defense missions design[C]//Proceedings of 7th IAA Planetary Defense Conference. Vienna,Austria:IAA,2021.
[49] 唐玉华,吴伟仁,李明涛,等. 地月空间近地小行星观测系统研究[J]. 中国科学:信息科学,2022,52(7):1169-1185TANG Y H,WU W R,LI M T,et al. Near-Earth asteroid observation system in cislunar space[J]. Scientia Sinica Informationis,2022,52(7):1169-1185.
[50] WIE B. Hovering control of a solar sail gravity tractor spacecraft for asteroid deflection[C]//Proceedings of the 17th AAS/AIAA Space Flight Mechanics Meeting.[S. l]:AAS. 2007.
[51] WIE B. Dynamics and control of gravity tractor spacecraft for asteroid deflection[J]. Journal of guidance,control,and dynamics,2008,31(5):1413-1423.
[52] PATTERSON M,BENSON S. NEXT ion propulsion system development status and performance:NASA/TM-2008-214988[R]. USA:AIAA,2007.
[53] SOVEY J S,RAWLIN V K,PATTERSON M J. Ion propulsion development projects in US:space electric rocket test I to deep space 1[J]. Journal of Propulsion and Power,2001,17(3):517-526.
[54] LEDKOV A S,ASLANOV V S. Active space debris removal by ion multi-beam shepherd spacecraft[J]. Acta Astronautica,2023,205:247-257.
[55] GIBBINGS A,VASILE M,WATSON I,et al. Experimental analysis of laser ablated plumes for asteroid deflection and exploitation[J]. Acta Astronautica,2013,90(1):85-97.
[56] VASILE M,GIBBINGS A,WATSON I,et al. Improved laser ablation model for asteroid deflection[J]. Acta Astronautica,2014,103:382-394.
[57] EHRESMANN M. Asteroid control through surface restructuring[J]. Acta Astronautica,2021,178:672-680.
[58] VETRISANO M,COLOMBO C,VASILE M. Asteroid rotation and orbit control via laser ablation[J]. Advances in Space Research,2016,57(8):1762-1782.
[59] THIRY N,VASILE M,MONCHIERI E. Mission and system design for the manipulation of phos with space-borne lasers[C]//Proceedings of 2016 IEEE Aerospace Conference. Big Sky,MT,USA:IEEE,2016.
[60] SONG Y J,PARK S Y. Estimation of necessary laser power to deflect near-Earth asteroid using conceptual variable-laser-power ablation[J]. Aerospace Science and Technology,2015,43:165-175.
[61] BAZZOCCHI M C F,EMAMI M R. Asteroid redirection mission evaluation using multiple landers[J]. The Journal of the Astronautical Sciences,2018,65:183-204.
[62] OLDS J,CHARANIA A,SCHAFFER M G. Multiple mass drivers as an option for asteroid deflection missions[C]//Proceedings of 2007 Planetary Defense Conference. Washington,DC:NASA,2007.
[63] SPITALE J N. Asteroid hazard mitigation using the Yarkovsky effect[J]. Science,2002,296(5565):77-77.
[64] AGGARWAL R,BHALLA D,DATTA D A,et al. Deflection of near-Earth asteroids by altering the surface albedo and increasing the net surface radiation to intensify the Yarkovsky effect in space[C]//Proceedings of 7th IAA Planetary Defense Conference. Vienna,Austria:IAA,2021.
[65] DEO S N,KUSHVAH B S. Yarkovsky effect and solar radiation pressure on the orbital dynamics of the asteroid (101955) Bennu[J]. Astronomy and Computing,2017(20):97-104.
[66] MAZANEK D D,REEVES D M,HOPKINS J B,et al. Enhanced gravity tractor technique for planetary defense[C]//Proceedings of IAA Planetary Defense Conference. Frascati,Roma,Italy:IAA,2015.
[67] MAZANEK D D,REEVES D M,ABELL P A,et al. Enhanced gravity tractor derived from the asteroid redirect mission for deflecting hypothetical asteroid 2017 PDC[C]//Proceedings of International Academy of Astronautics (IAA) Planetary Defense Conference 2017. Tokyo:IAA,2017.
[68] MAZANEK D D,MERRILL R G,BROPHY J R,et al. Asteroid redirect mission concept:a bold approach for utilizing space resources[J]. Acta Astronautica,2015,117:163-171.
[69] GATES M,MUIRHEAD B,NAASZ B,et al. NASA's asteroid redirect mission concept development summary[C]//Proceedings of 2015 IEEE Aerospace Conference. Big Sky,MT,USA:IEEE,2015:1-13.
[70] GATES M,STICH S,MCDONALD M,et al. The asteroid redirect mission and sustainable human exploration[J]. Acta Astronautica,2015,111:29-36.
[71] WANG Y,LI M,GONG Z,et al. Assembled kinetic impactor for deflecting asteroids by combining the spacecraft with the launch vehicle upper stage[J]. Icarus,2021,368:114596.
[72] STRONG J,MORGOWICZ B,TOMPKINS P,et al. Transport and use of a Centaur second stage in space[C]//Proceedings of SpaceOps 2010 Conference Delivering on the Dream Hosted by NASA Marshall Space Flight Center and Organized by AIAA. Huntsville,Alabama:AIAA,2010.
[73] BROWN W. A novel push-pull asteroid magnetic tractor (MT)[J]. Acta Astronautica,2019,156:371-374.
[74] CIRELLI R,GONZALO GÒMEZ J L,COLOMBO C. Gravitational-magnetic tug:combined gravitational and magnetic interactions for asteroid deflection[C]//Proceedings of 7th IAA Planetary Defense Conference. Vienna,Austria:IAA,2021.
[75] VENDITTI F C F,MARCHI L O,MISRA A K,et al. Dynamics of tethered asteroid systems to support planetary defense[J]. The European Physical Journal Special Topics,2020,229:1463-1477.
PDF(1311 KB)

Accesses

Citations

Detail

Sections
Recommended

/