High Precision State Estimation Method Design for Space-Based Gravitational Wave Detection Spacecraft

ZHANG Donglin1, CAO Yifan1, DUAN Zhansheng1, WANG Pengcheng2, GUO Ming2, ZHANG Yonghe2

PDF(1077 KB)
PDF(1077 KB)
Journal of Deep Space Exploration ›› 2023, Vol. 10 ›› Issue (5) : 557-564. DOI: 10.15982/j.issn.2096-9287.2023.20230035
Research Papers
Research Papers

High Precision State Estimation Method Design for Space-Based Gravitational Wave Detection Spacecraft

  • ZHANG Donglin1, CAO Yifan1, DUAN Zhansheng1, WANG Pengcheng2, GUO Ming2, ZHANG Yonghe2
Author information +
History +

Abstract

Based on multi-sensor data from star sensors and inertial sensors, a high-performance Kalman filtering algorithm with linearized quaternion measurements was proposed in this paper. According to the ultra-stable and ultra-static platform characteristics of the task, new pseudo-linear measurements were constructed by an approximate transformation for quaternion measurements under small angle change of the spacecraft so that the linear assumption of Kalman filtering was satisfied. Combined with the discrete-time state space model of spacecraft system and the multi-sensor measurements, a Kalman filtering algorithm with linearized quaternion measurements was designed, to achieve high-precision in-orbit state estimation of spacecraft system. The simulation experiments are provided to demonstrate the effectiveness of the proposed Kalman filtering algorithm, which meets the precision requirement of spacecraft attitude estimation for space-based gravitational waves detection and provides the high-precision observation for spacecraft attitude control.

Keywords

gravitational wave detection / nonlinear measurements / Kalman filtering

Cite this article

Download citation ▾
ZHANG Donglin, CAO Yifan, DUAN Zhansheng, WANG Pengcheng, GUO Ming, ZHANG Yonghe. High Precision State Estimation Method Design for Space-Based Gravitational Wave Detection Spacecraft. Journal of Deep Space Exploration, 2023, 10(5): 557‒564 https://doi.org/10.15982/j.issn.2096-9287.2023.20230035

References

[1] 胡越欣,张立华,高永,等. 空间引力波探测航天器关键技术分析[J]. 航天器工程,2022,31(4):1-7HU Y X,ZHANG L H,GAO Y,et al. Analysis of key technologies of spacecraft for gravitational waves detection in space[J]. Spacecraft Engineering,2022,31(4):1-7
[2] 罗子人,白姗,边星,等. 空间激光干涉引力波探测[J]. 力学进展,2013,43(4):415-447LUO Z R,BAI S,BIAN X,et al. Space-based gravitational waves detection spacecraft by laser interferometry[J]. Advances In Mechanics,2013,43(4):415-447
[3] 罗俊,艾凌皓,艾艳丽,等. 天琴计划简介[J]. 中山大学学报(自然科学版),2021,60(Z1):1-19LUO J,AI L H,AI Y L,et al. A brief introduction to the TianQin project[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni,2021,60(Z1):1-19
[4] CIRILLO F. Controller design for the acquisition phase of the LISA mission using a Kalman filter [D]. Pisa: University of Pisa, 2007.
[5] STEPHEN M M. LISA technology status summary:LISAMSE-RP-0001[R]. Paris:ESA,2009.
[6] GATH P, FICHTER W, KERSTEN M, et al. Drag free and attitude control system design for the LISA pathfinder mission [C]//Proceedings of AIAA Guidance, Navigation, and Control Conference and Exhibit. Providence, Rhode Island, USA: AIAA, 2004.
[7] FICHTER W,GATH P,VITALE S,et al. LISA pathfinder drag-free control and system implications[J]. Classical & Quantum Gravity,2005,22(10):S139
[8] 吕振铎,雷拥军. 卫星姿态测量与确定[M]. 北京:国防工业出版社,2013.
[9] 周海银,王炯琦,潘晓刚,等. 卫星状态融合估计理论与方法[M]. 北京:科学出版社,2013.
[10] 王炯琦,矫媛媛,周海银,等. 复杂卫星抖动下的星敏感器姿态测量数据处理技术[J]. 电子与信息学报,2010,32(8):1-7WANG J Q,JIAO Y Y,ZHOU Y H,et al. Star sensor attitude measuring data processing technique in condition of complex satellite dithering[J]. Journal of Electronics & Information Technology,2010,32(8):1-7
[11] SHUSTER M D,OH S D. Three-axis attitude determination from vector observations[J]. Journal of Guidance and Control,1981,4(1):70-77
[12] MARKLEY F L. Attitude determination using vector observations and the singular value decomposition[J]. Journal of the Astronautical Sciences,1987,38(3):245-258.
[13] DANIELE M. Euler-q Algorithm for attitude determination from vector observations[J]. Journal of Guidance Control and Dynamics,1998,21(2):328-334
[14] SHUSTER M D. Kalman filtering of spacecraft attitude and the QUEST model[J]. Journal of the Astronautical Sciences,1990,38(3):377-393
[15] KALMAN R E. A new approach to linear filtering and prediction problems[J]. Journal of Fluids Engineering,1959,82D:35-45
[16] LEFFERTS E J,MARKLEY F L,SHUSTER M D. Kalman filtering for spacecraft attitude estimation[J]. Journal of Guidance Control Dynamics,1982,5(5):536-542
[17] 廖鹤,王本利,曹正礼. 用于无陀螺卫星姿态确定的预测UKF算法[J]. 南京理工大学学报(自然科学版),2011,35(5):687-692LIAO H,WANG B L,CAO Z L. Predictive unscented Kalman filter for gyroless satellite attitude determination[J]. Journal of Nanjing University of Science and Technology,2011,35(5):687-692
[18] CRASSIDIS J L,MARKLEY F L,CHENG Y. Survey of nonlinear attitude estimation methods[J]. Journal of Guidance,Control,and Dynamics,2007,30(1):12-28
[19] GORDON N J. Novel approach to non-liner/non-Gaussian Bayesian state estimation [J]. IEE Proceedings F (Radar and Signal Processing), 1993, 140(2): 107-113.
[20] NARGAARD M,POULSEN N K,RAVN O. New developments in state estimation for nonlinear systems[J]. Automatica,2000,36(11):1627-1638
[21] 魏喜庆,宋申民. 基于容积卡尔曼滤波的卫星姿态估计[J]. 宇航学报,2013,34(2):193-200WEI S X,SONG S M. Cubature Kalman filter-based satellite attitude estimation[J]. Journal of Astronautics,2013,34(2):193-200
PDF(1077 KB)

Accesses

Citations

Detail

Sections
Recommended

/