Space-Based Orbit Determination and Time Synchronization Method for Three Typical Cislunar Orbits

PU Jinghui1,2, LI Shuanglin1,2, LIU Jiangkai3, GUO Pengbin2, WANG Wenbin2

PDF(3055 KB)
PDF(3055 KB)
Journal of Deep Space Exploration ›› 2023, Vol. 10 ›› Issue (6) : 641-651. DOI: 10.15982/j.issn.2096-9287.2023.20230017

Space-Based Orbit Determination and Time Synchronization Method for Three Typical Cislunar Orbits

  • PU Jinghui1,2, LI Shuanglin1,2, LIU Jiangkai3, GUO Pengbin2, WANG Wenbin2
Author information +
History +

Abstract

In this paper, a space-based orbit determination and time synchronization method for Earth-Moon spacecraft was presented. As a “space-based tracking station”, LEO satellite on the one hand receives GNSS navigation signals to achieve high-precision real-time orbit determination and timing;on the other hand, it establishes measurement links with Earth-moon space spacecraft to support the fast and high-precision orbit determination of Earth-moon spacecraft. Compared with ground stations, LEO satellites operate at a faster speed and orbit the Earth in a shorter period. The Earth-Moon spacecraft and its measurement link have the advantages of short invisible time interval, better measurement geometry, and no atmospheric delay in the measurement process. Therefore, using LEO satellite can improve the convergence speed and accuracy of orbit determination. This paper analyzed the space-based orbit determination and time synchronization performance of three typical orbits in Earth-Moon space, including the distant retrograde orbit (DRO), the highly elliptical orbit (HEO) and the Earth-moon transfer orbit. Space-based orbit determination simulation results show that when the LEO satellite position accuracy is high, the convergence time of the three orbits is less than 3 hours, the orbit position accuracy is about 50 m, and the time synchronization accuracy is tens of nanoseconds. Therefore, this method can hopefully solve the problems of limited deployment and heavy burden of ground stations.

Keywords

space-based orbit determination / GNSS navigation / satellite-to-satellite tracking link / dual one-way ranging / extended Kalman filter

Cite this article

Download citation ▾
PU Jinghui, LI Shuanglin, LIU Jiangkai, GUO Pengbin, WANG Wenbin. Space-Based Orbit Determination and Time Synchronization Method for Three Typical Cislunar Orbits. Journal of Deep Space Exploration, 2023, 10(6): 641‒651 https://doi.org/10.15982/j.issn.2096-9287.2023.20230017

References

[1] WOLLENHAUPT W. Apollo orbit determination and navigation[C]//Proceedings of 8th Aerospace Sciences Meeting. New York:NASA,1970.
[2] VIGHNESAM N V,SONNEY A,GOPINATH N S. India’s first lunar mission Chandrayaan-1 initial phase orbit determination[J]. Acta Astronautica,2010,67(7-8):784-792.
[3] SCULL J R. Mariner Mars 1969 navigation,guidance and control[J]. Automatica (Journal of IFAC),1970,6(6):755-762.
[4] HAN D,HIGHSMITH D,JAH M,et al. Mars express interplanetary navigation from launch to Mars orbit insertion:the JPL experience[C]//Proceedings of 18th International Symposium on Space Flight Dynamics. Munich:NASA,2004.
[5] CAO J F,HUANG Y,HU X G,et al. Mars Express tracking and orbit determination trials with Chinese VLBI network[J]. Chinese Science Bulletin,2010,55(32):3654-3660.
[6] KIM Y,SONG Y. Observational arc-length effect on orbit determination for Korea Pathfinder Lunar Orbiter in the Earth-Moon transfer phase using a sequential estimation[J]. Journal of Astronomy and Space Sciences,2019,36(4):293-306.
[7] JONES D R,THOMPSON P,VALERINO P,et al. Orbit determination covariance analyses for the parker solar probe mission[C]//Proceedings of AAS/AIAA. Washington:AIAA,2017.
[8] YANG P,HUANG Y,LI P J,et al. Orbit determination of China’s first mars probe Tianwen-1 during interplanetary cruise[J]. Advances in Space Research,2022,69(2):1060-1071.
[9] MAZARICO E,NEUMANN G A,BARKER M K,et al. Orbit determination of the Lunar Reconnaissance Orbiter:status after seven years[J]. Planetary and Space Science,2018,162:2-19.
[10] THOMPSON P F,GOODSON T,CHUNG M,et al. Parker solar probe navigation:one year from launch[R]. Pasadena,CA:Jet Propulsion Laboratory,2017.
[11] SCHRAMA E. Precision orbit determination performance for CryoSat-2[J]. Advances in Space Research,2018,61(1):235-247.
[12] LIU S H,YAN J G,CAO J F,et al. Review of the precise orbit determination for Chinese lunar exploration projects[J]. Earth and Space Science,2021,8(4):e1361E-e2020E.
[13] GARDNER T,CHEETHAM B,FORSMAN A,et al. Capstone:a cubesat pathfinder for the lunar gateway ecosystem[C]//Proceedings of Small Satellite Conference. Logan:Utah State University,2021.
[14] BRIDENSTINE J. NASA's Lunar Exploration Program Overview[R]. NASA,2020.
[15] ZHOU C Y,JIA Y Z,LIU J Z,et al. Scientific objectives and payloads of the lunar sample return mission—Chang’e-5[J]. Advances in Space Research,2022,69(1):823-836.
[16] SUNDARARAJAN V. Overview and technical architecture of India's Chandrayaan-2 mission to the Moon[C]//Proceeding of 2018 AIAA Aerospace Sciences Meeting. Kissimmee, Florida:AIAA,2018.
[17] CHOI S,WHITLEY R,CONDON G,et al. Trajectory design for the Korea Pathfinder Lunar Orbiter (KPLO)[C]//Proceedings of AAS/AIAA Astrodynamics Specialist Conference. [S.l]:AIAA,2018.
[18] MA X,FANG J C,NING X L,et al. Autonomous celestial navigation for a deep space probe approaching a target planet based on ephemeris correction[J]. Proceedings of the Institution of Mechanical Engineers,Part G. Journal of Aerospace Engineering,2015,229(G14):2681-2699.
[19] HILL K,BORN G H. Autonomous interplanetary orbit determination using satellite-to-satellite tracking[J]. Journal of Guidance,Control,and Dynamics,2007,30(3):679-686.
[20] TURAN E,SPERETTA S,GILL E. Autonomous navigation for deep space small satellites:Scientific and technological advances[J]. Acta Astronautica,2022,193:56-74.
[21] LIU J K,WANG W B,ZHANG H,et al. Autonomous orbit determination and timekeeping in lunar distant retrograde orbits by observing X‐ray pulsars[J]. Navigation,2021,68(4):687-708.
[22] WANG W B,SHU L Z,LIU J K,et al. Joint navigation performance of distant retrograde orbits and cislunar orbits via LiAISON considering dynamic and clock model errors[J]. Navigation,2019,66(4):781-802.
[23] HESAR S G,PARKER J S,LEONARD J M,et al. Lunar far side surface navigation using Linked Autonomous Interplanetary Satellite Orbit Navigation (LiAISON)[J]. Acta Astronautica,2015,117:116-129.
[24] CAPPELLETTI C,BATTISTINI S,MALPHRUS B. CubeSat handbook:from mission design to operations[M]. Newyork :Elsevier,2020.
[25] VETTER J R. Fifty years of orbit determination[J]. Johns Hopkins APL technical digest,2007,27(3):239.
[26] WINTERNITZ L B,BAMFORD W A,PRICE S R,et al. Global positioning system navigation above 76,000 km for NASA's magnetospheric multiscale mission[J]. NAVIGATION:Journal of the Institute of Navigation,2017,64(2):289-300.
[27] WINTERNITZ L,BAMFORD B,LONG A,et al. GPS based autonomous navigation study for the Lunar gateway[C]//Proceedings of Annual American Astronautical Society (AAS) Guidance, Navigation, and Control Conference. Breckenridge,CO,US:NASA,2019.
[28] PARRISH N L,BOLLIGER M J,KAYSER E,et al. Near rectilinear Halo orbit determination with simulated DSN observations[C]//Proceedings of AIAA Scitech 2020 Forum. Orlando,FL:AIAA,2020.
[29] BECKETT D. Overview of the XNAV Program,X-ray Navigation using Celestial Sources[C]//Proceedings of Small Satellite Conference. Logan Utah:[s.n.],2006.
[30] GETCHIUS J,LONG A,FARAHMAND M,et al. Predicted Performance of an X-Ray Navigation System for Future Deep Space and Lunar Missions[C]//Proceedings of Annual AAS Guidance, Navigation and Control Conference. Breckenridge:NASA,2019.
[31] WITTERNIGG N,OBERTAXER G,SCHÖNHUBER M,et al. Weak GNSS signal navigation for Lunar exploration missions[C]//Proceedings of the 28th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2015).[S.l.]:IOP,2015.
[32] 蒲京辉,王文彬. 地月空间两类长周期轨道自主定轨研究[C]//中国力学大会2021+1. 成都:中国力学学会,2022.
PU J H,WANG W B. STUDY ON AUTONOMOUS ORBIT DETERMINATION OF TWO TYPES OF LONG PERIOD ORBITS IN THE CISLUNAR SPACE[C]//Chinese Congress of Theoretical and Applied Mechanics. Chengdu,China:The Chinese Society of Theoretical and Applied Mechanics,2022.
[33] ZUCCA C,TAVELLA P. The clock model and its relationship with the Allan and related variances[J]. IEEE transactions on ultrasonics,ferroelectrics,and frequency control,2005,52(2):289-296.
[34] 王文彬. 基于 DRO-LEO 编队的地月航天器自主导航与授时研究[D]. 北京:中国科学院大学,2020.
WANG W B. Autonomous Navigation and Timing in Cislunar Space enabled by DRO-LEO Formation[D]. Beijing:University of Chinese Academy of Sciences,2020.
[35] HUTSELL S T. Relating the Hadamard variance to MCS Kalman filter clock estimation[C//Proceedings of the 27th Annual Precise Time and Time Interval Systems and Applications Meeting. USA:NSSA,1995.
[36] 刘江凯. 地月空间DRO航天器自主导航技术仿真研究 —基于脉冲星、GNSS、LEO星间链路[D]. 北京:中国科学院大学,2022.
LIU J K. Simulation research on autonomous navigation technology for spacecraft in cislunar DROs-based on pulsar,GNSS,and LEO-linking[D]. Beijing:University of Chinese Academy of Sciences,2022.
[37] KAPLAN E. Understanding GPS:principles ≈plications,2nd Edition[M]. Norwood:Artech Publishing,2006.
[38] MONTENBRUCK O,GILL E. Satellite Orbits:Models,Methods,and Applications[M]. Germany:Springer Science & Business Media,2000.
[39] 彭超,温昶煊,高扬. 地月空间DRO与HEO(3∶1/2∶1)共振轨道延拓求解及其稳定性分析[J]. 载人航天,2018,24(6):703-718.
PENG C,WEN C X,GAO Y. DRO and HEO ( 3∶1 /2∶1) resonant orbits in cislunar space calculated by continuation and their stability analysis[J]. Manned Spaceflight,2018,24(6):703-718.
[40] YAN J,PING J,FEI L,et al. Chang'E-1 precision orbit determination and lunar gravity field solution[J]. Advances in Space Research,2010,46(1):50-57.
[41] CAO J F,LIU Y,HU S J,et al. Navigation of Chang’E-2 asteroid exploration mission and the minimum distance estimation during its fly-by of Toutatis[J]. Advances in Space Research,2015,55(1):491-500.
[42] QIN S H,HUANG Y,LI P J,et al. Orbit and tracking data evaluation of Chang’E-4 relay satellite[J]. Advances in Space Research,2019,64(4):836-846.
[43] YANG P,HUANG Y,LI P J,et al. Trajectory determination of Chang’E-5 during landing and ascending[J]. Remote Sensing,2021,13(23):4837.
PDF(3055 KB)

Accesses

Citations

Detail

Sections
Recommended

/