PDF(1693 KB)
An Adaptive Kalman Filter for Mars Spacecraft Approach Phase
- XIE Tianhao, ZHANG Wenjia, MA Xin, NING Xiaolin
Author information
+
School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
Show less
History
+
Received |
Revised |
Published |
03 Feb 2023 |
24 Feb 2023 |
12 Jul 2023 |
Issue Date |
|
12 Jul 2023 |
|
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
This is a preview of subscription content, contact
us for subscripton.
References
[1] 房建成,宁晓琳,田玉龙. 航天器自主天文导航原理与方法[M]. 北京:国防工业出版社,2006.2:137.
[2] 薛喜平,张洪波,孔德庆. 深空探测天文自主导航技术综述[J]. 天文研究与技术,2017,14(3):382-391
XUE X P,ZHANG H B,KONG D Q. Celestial autonomous navigation technology for deep space exploration[J]. Astronomical Research and Technology,2017,14(3):382-391
[3] BHASKARAN S. Optical navigation for the stardust wild2 encounter[C]//Proceedings of the 18th International Symposium on Space Flight Dynamics . German:ESA,2004.
[4] 戴文战,黄晓姣,沈忱. 带遗忘因子的自适应迭代容积卡尔曼滤波算法[J]. 科技通报,2019,35(1):181-185
DAI W Z,HUANG X J,SHEN C. Adaptive iterative cubature kalman filtering algorithm with forgetting factor[J]. Bulletin of Science and Technology,2019,35(1):181-185
[5] 李建锋,张慧星,闫美辰. 迭代扩展卡尔曼滤波在相对姿态估计中的应用[J]. 导弹与航天运载技术,2012(6):48-52
LI J F,ZHANG H X,YAN M C. Application of Iterative Extended Kalman filter in relative attitude estimation[J]. Missiles and Space Vehicles,2012(6):48-52
[6] JULIER S J,UHLMANN J K. Unscented filtering and nonlinear estimation[J]. Proceeding of the IEEE,2004,92(3):401-422
[7] JIA B,XIN M,PHAM K,et al. Multiple sensor estimation using a high-degree cubature information filter[C]//Proceedings of Sensors and Systems for Space Applications VI. Baltimore,Maryland:SPIE,2013.
[8] ARASARATNAM I,HAYKIN S. Cubature Kalman filters[J]. IEEE Transactions on Automatic Control,2009,54(6):1254-1269
[9] BAR S Y,LI X R,KIRUBARAJAN T. Estimation with application to tracking and navigation[M]. New York:John Wiley & Sons Inc,2001.
[10] 吴伟仁,王大轶,宁晓琳. 深空探测器自主导航原理与技术[M]. 北京:中国宇航出版社,2011:122.
WU W R,WANG D Y,NING X L. Principle and technology of autonomous navigation of deep space probe[M]. Beijing:China Aerospace Press,2011:122.
[11] 张文佳,马辛. 深空探测器接近段自主导航的滑动窗口自适应滤波方法[J]. 上海交通大学学报,2022,56(11):1461-1469
ZHANG W J,MA X. A sliding window adaptive filtering method for autonomous navigation of deep space probe in approach segment[J]. Journal of Shanghai Jiaotong University,2022,56(11):1461-1469
[12] 王广玉,窦磊,窦杰. 基于自适应卡尔曼滤波的多目标跟踪算法[J]. 计算机应用,2022,42(S1):271-275
WANG G Y,DOU L,DOU J. Multi-target tracking algorithm based on adaptive Kalman filter[J]. Journal of Computer Applications,2022,42(S1):271-275
[13] 宁晓琳,李卓,黄盼盼,等. 火星探测器捕获段自适应卡尔曼滤波方法[J]. 深空探测学报(中英文),2016,3(3):237-245
NING X L,LI Z,HUANG P P,et al. Adaptive Kalman filtering method for acquisition segment of Mars probe[J]. Journal of Deep Space Exploration,2016,3(3):237-245
[14] 丁家琳,肖建. 基于极大后验估计的自适应容积卡尔曼滤波器[J]. 控制与决策,2014,29(2):327-334
DING J L,XIAO J. Adaptive cubature kalman filter based on maximum a posteriori estimation[J]. Control and Decision,2014,29(2):327-334
[15] ZHOU Q F,ZHANG H,LI Y,et al. An adaptive low cost GNSS/MEMS-IMU tightly coupled integration system with aiding measurement in a GNSS signal challenged environment[J]. Sensors,2015,15(9):23953-23982
[16] HU C W,CHEN W. Adaptive Kalman filtering for vehicle navigation[J]. Journal of Global Positioning System,2003,2(1):227-233
[17] 张文玲,朱明清,陈宗海. 基于强跟踪UKF的自适应SLAM算法[J]. 机器人,2010,32(2):190-195
ZHANG W L,ZHU M Q,CHEN Z H. Adaptive SLAM algorithm based on strong tracking UKF[J]. Robot,2010,32(2):190-195
[18] 张抒扬,董鹏,敬忠良. 变分贝叶斯自适应容积卡尔曼的SLAM算法[J]. 哈尔滨工业大学学报,2019,51(4):12-18
ZHANG S Y,DONG P,JING Z L. SLAM algorithm based on Bayesian adaptive volume Kalman[J]. Journal of Harbin Institute of Technology,2019,51(4):12-18
[19] LEE D J,ALFRIEND K. Adaptive sigma point filtering for state and parameter estimation[C]//AIAA/AAS Astrodynamics Specialist Conference and Exhibit. Providence,Rhode Island:AIAA,2004.
[20] BUSSE F D,HOW J P,SIMPSON J. Demonstration of adaptive extended Kalman filter for low-Earth-orbit formation estimation using CDGPS[J]. Navigation,2003,50(2):79-93