PDF(1771 KB)
Topic: Celestial Navigation Technology for Deep Space Exploration
Topic: Celestial Navigation Technology for Deep Space Exploration
Relativistic Navigation Method for Deep Space Probes
- XIONG Kai, WEI Chunling, LI Liansheng, ZHOU Peng
Author information
+
Science and Technology on Space Intelligent Control Laboratory, Beijing Institute of Control Engineering, Beijing 100094, China
Show less
History
+
Received |
Revised |
Published |
29 Jan 2023 |
28 Feb 2023 |
12 Jul 2023 |
Issue Date |
|
12 Jul 2023 |
|
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
This is a preview of subscription content, contact
us for subscripton.
References
[1] 房建成,宁晓琳. 深空探测器自主天文导航方法[M]. 西安:西北工业大学出版社,2010.
[2] 王大轶,黄翔宇,魏春岭. 基于光学成像测量的深空探测自主控制原理与技术[M]. 北京:中国宇航出版社,2012.
[3] 崔平远,高艾,朱圣英. 深空探测器自主导航与制导[M]. 北京:中国宇航出版社,2016.
[4] 张伟,许俊,黄庆龙,等. 深空天文自主导航技术发展综述[J]. 飞控与探测,2020,3(4):8-16
ZHANG W,XU J,HUANG Q L,et al. Survey of autonomous celestial navigation technology for deep space[J]. Fight Control & Detection,2020,3(4):8-16
[5] 徐瑞,李朝玉,朱圣英,等. 深空探测器自主规划技术研究进展[J]. 深空探测学报(中英文),2021,8(2):111-123
XU R,LI Z Y,ZHU S Y,et al. Research progress of autonomous planning technology for deep space probes[J]. Journal of Deep Space Exploration,2021,8(2):111-123
[6] CHRISTIAN J A. Optical navigation using planet's centroid and apparent diameter in image[J]. Journal of Guidance,Control,and Dynamics,2015,38(2):192-204
[7] FRANZESE V,TOPPUTO F. Optimal beacons selection for deep-space optical navigation[J]. The Journal of the Astronautical Sciences,2020,67:1775-1792
[8] ZHU S Y,XIU Y,ZHANG N,et al. Crater-based attitude and position estimation for planetary exploration with weighted measurement uncertainty[J]. Acta Astronautica,2020,176:216-232
[9] OGAWA N,TERUI F,MIMASU Y,et al. Image-based autonomous navigation of Hayabusa2 using artificial landmarks:the design and brief in-flight results of the first landing on asteroid Ryugu[J]. Astrodynamics,2020,4(2):89-103
[10] ELY T A,SEUBERT J,BRADLEY N,et al. Radiometric autonomous navigation fused with optical for deep space exploration[J]. The Journal of the Astronautical Sciences,2021,68:300-325
[11] SHEIKH S I,PINES D J,RAY P S,et al. Spacecraft navigation using X-ray pulsars[J]. Journal of Guidance,Control,and Dynamics,2006,29(1):49-63
[12] WANG Y,ZHENG W,ZHANG D,et al. X-ray pulsar-based navigation method using one sensor and modified time-differenced measurement[J]. Proceedings of the Institution of Mechanical Engineers,Part G:Journal of Aerospace Engineering,2019,233(1):299-309
[13] LIU J,NING X L,MA X,et al. Geometry error analysis in solar Doppler difference navigation for the capture phase[J]. IEEE Transactions on Aerospace and Electronic Systems,2019,55(5):2556-2567
[14] NING X,CHAO W,HUANG Y,et al. Spacecraft autonomous navigation using the Doppler velocity differences of different points on the solar disk[J]. IEEE Transactions on Aerospace and Electronic Systems,2020,56(6):4615-4625
[15] CHRISTIAN J A. StarNAV:autonomous optical navigation of a spacecraft by the relativistic perturbation of starlight[J]. Sensors,2019,19:4064
[16] YUCALAN D,PECK M. A static estimation method for autonomous navigation of relativistic spacecraft[C]//Proceedings of IEEE Aerospace Conference. Big Sky,MT,USA:IEEE,2019.
[17] CALABRO E. Relativistic aberrational interstellar navigation[J]. Acta Astronautica,2011,69:360-364
[18] XIONG K,WEI C. Integrated celestial navigation for spacecraft using interferometer and Earth sensor[J]. Proceedings of the Institution of Mechanical Engineers,Part G:Journal of Aerospace Engineering,2020,234(16):2248-2262
[19] XIONG K,WEI C,ZHOU P. Integrated autonomous optical navigation using Q-learning extended Kalman filter[J]. Aircraft Engineering and Aerospace Technology,2022,94(6):848-861
[20] WEI Q,LEWIS F L,SUN Q,et al. Discrete-time deterministic Q-learning:a novel convergence analysis[J]. IEEE Transactions on Cybernetics,2017,47(5):1224-1237
[21] 熊凯,魏春岭,郭建新. 航天器导航滤波器设计方法[M]. 北京:中国宇航出版社,2022
[22] SUTTON R S,BARTO A G. Reinforcement learning:an Introduction[M]. London,England:MIT Press,2018.
[23] LEI M,WYK B J,QI Y. Online estimation of the approximate posterior Cramer-Rao lower bound for discrete-time nonlinear filtering[J]. IEEE Transactions on Aerospace and Electronic Systems,2011,47(1):37-57
[24] RISTIC B,FARINA A,BENVENUTI D,et al. Performance bounds and comparison of nonlinear filters for tracking a ballistic object on re-entry[J]. IEE P-Radar Sonar Navigation,2003,150:65-70
[25] DONG G,ZHU Z H. Autonomous robotic capture of non-cooperative target by adaptive extended Kalman filter based visual servo[J]. Acta Astronautica,2016,122:209-218
[26] XIONG K,WEI C,LIU L. Robust extended Kalman filtering for nonlinear systems with stochastic uncertainties[J]. IEEE Transactions on System Man & Cybernetics,Part A,2010,40(2):399-405