An Autonomous Navigation Method for Spacecraft in Cislunar Space Using Stellar Aberration Observation

LIU fucheng1,2, LI Muzi2,3, PENG Yang2,3, SUN Jun2,3, LIU Jingxi2,3

PDF(1643 KB)
PDF(1643 KB)
Journal of Deep Space Exploration ›› 2023, Vol. 10 ›› Issue (2) : 159-168. DOI: 10.15982/j.issn.2096-9287.2023.20220109
Topic: Celestial Navigation Technology for Deep Space Exploration

An Autonomous Navigation Method for Spacecraft in Cislunar Space Using Stellar Aberration Observation

  • LIU fucheng1,2, LI Muzi2,3, PENG Yang2,3, SUN Jun2,3, LIU Jingxi2,3
Author information +
History +

Abstract

Exploration and utilization of the cislunar space is of great significance to the future development of human society. In order to improve navigation efficiency and survivability of spacecraft in cislunar space and reduce the burden of ground measurement and control,an autonomous navigation method only using star imagery was presented. In the method,the observation model was constructed based on stellar aberration effect. With the help of the orbit dynamic model and an extended Kalman filter,spacecraft orbit was estimated. For the problems of gravitational field interference from large celestial bodies and navigation accuracy decline under the constraints of small field of view,a gravitational field processing model based on dynamical model prediction and a multi-field collaborative observation method were proposed. Finally,the Monte-Carlo simulation results demonstrate the feasibility of the proposed method,and show that a navigation precision RMS better than 3 km and 0.2 m/s can be achieved.

Keywords

stellar aberration / autonomous navigation / celestial navigation / cislunar space

Cite this article

Download citation ▾
LIU fucheng, LI Muzi, PENG Yang, SUN Jun, LIU Jingxi. An Autonomous Navigation Method for Spacecraft in Cislunar Space Using Stellar Aberration Observation. Journal of Deep Space Exploration, 2023, 10(2): 159‒168 https://doi.org/10.15982/j.issn.2096-9287.2023.20220109

References

[1] 房建成,宁晓琳,马辛,等. 深空探测器自主天文导航技术综述[J]. 飞控与探测,2018,1(1):1-15
FANG J C,NING X L,MA X,et al. A survey of autonomous astronomical navigation technology for deep space detectors[J]. Flight Control & Detection,2018,1(1):1-15
[2] 宁晓琳,梁晓钰,孙晓函,等. 基于折射方向矢量的地球卫星星光折射导航新方法[J]. 飞控与探测,2020,3(2):8-16
NING X L,LIANG X Y,SUN X H,et al. New method of Earth satellite stellar refraction navigation based on stellar refraction direction vecter[J]. Flight Control & Detection,2020,3(2):8-16
[3] HICKS K D,WIESEL JR W E. Autonomous orbit determination system for Earth satellites[J]. Journal of Guidance,Control,and Dynamics,1992,15(3):562-566
[4] HOSKEN R W,WERTZ J R. Microcosm autonomous navigation system on-orbit operation[J]. Advances in the Astronautical Sciences,1995,88:1-15
[5] 宁晓琳,晁雯,杨雨青. 一种深空天文测角导航中的星历误差抑制方法[J]. 宇航学报,2019,40(12):1412-1421
NING X L,CHAO W,YANG Y Q. A method against ephemeris error in deep space celestial angle measurement navigation[J]. Journal of Astronautics,2019,40(12):1412-1421
[6] SHEIKH S I,PINES D J,RAY P S,et al. Spacecraft navigation using X-ray pulsars[J]. Journal of Guidance,Control,and Dynamics,2006,29(1):49-63
[7] EMADZADEH A A,SPEYER J L. X-ray pulsar-based relative navigation using epoch folding[J]. IEEE transactions on Aerospace and Electronic Systems,2011,47(4):2317-2328
[8] JINGJING L,WENCONG W. Distributed satellite autonomous navigation using X-ray pulsars[J]. Advances in Space Research,2023,71(6):2711-2722
[9] 张伟,陈晓,尤伟,等. 光谱红移自主导航新方法[J]. 上海航天,2013,30(2):32-33,38
ZHANG W,CHEN X,YOU W,et al. New autonomous navigation method based on redshift[J]. Aerospace Shanghai,2013,30(2):32-33,38
[10] 张伟,张恒. 天文导航在航天工程应用中的若干问题及进展[J]. 深空探测学报(中英文),2016,3(3):204-13
ZHANG W,ZHANG H. Research on problems of celestial navigatoin in space engineering[J]. Journal of Deep Space Exporation,2016,3(3):204-13
[11] YIM J,CRASSIDIS J,JUNKINS J. Autonomous orbit navigation of interplanetary spacecraft[C]//Proceedings of the Astrodynamics Specialist Conference 2000. USA:AIAA,2000.
[12] ZHANG Z,LIU J,NING X. Celestial spectrum velocimetry with non-linear fourier phase shift and its CRLB[J]. IEEE Access,2022,10:23321-23332
[13] GUI M,YANG H,NING X,et al. Variational Bayesian implicit unscented Kalman filter for celestial navigation using time delay measurement[J]. Advances in Space Research,2023,71(1):756-767
[14] NING X,GUI M,FANG J,et al. A novel autonomous celestial navigation method using solar oscillation time delay measurement[J]. IEEE Transactions on Aerospace and Electronic Systems,2018,54(3):1392-1403
[15] MARKLEY F L,CRASSIDIS J L. Fundamentals of spacecraft attitude determination and control[M]. Germany:Springer,2014.
[16] KLIONER S A. A practical relativistic model for microarcsecond astrometry in space[J]. The Astronomical Journal,2003,125(3):1580-1597
[17] 李苗,周连文,何益康,等. 星敏感器在轨光行差修正方法研究[J]. 导航定位与授时,2018,5(1):60-63
LI M,ZHOU L W,HE Y K,et al. A method of star sensor aberration correction on-orbit[J]. Navigation Positioning & Timing,2018,5(1):60-63
[18] MELVIN P J. A Kalman filter for orbit determination with applications to GPS and stellar navigation[J]. Spaceflight Mechanics,1996,93:719-738
[19] CHRISTIAN J A. Starnav:Autonomous optical navigation of a spacecraft by the relativistic perturbation of starlight[J]. Sensors,2019,19(19):4064
[20] MCKEE P,KOWALSKI J,CHRISTIAN J A. Navigation and star identification for an interstellar mission[J]. Acta Astronautica,2022,192:390-401
[21] MCKEE P,NGUYEN H,KUDENOV M W,et al. StarNAV with a wide field-of-view optical sensor[J]. Acta Astronautica,2022,197:220-234
[22] MUZI L,JUN S,YANG P,et al. Observability and performance analysis of spacecraft autonomous navigation using stellar aberration observation[C]//Proceedings of the 2021 5th International Conference on Vision,Image and Signal Processing(ICVISP). Kuala Lumpur,Malaysia:IEEE,2021.
[23] XIONG K,WEI C. Integrated celestial navigation for spacecraft using interferometer and Earth sensor[J]. Proceedings of the Institution of Mechanical Engineers,Part G:Journal of Aerospace Engineering,2020,234(16):2248-2262
[24] XIONG K,WEI C,ZHOU P. Integrated autonomous optical navigation using Q-learning extended Kalman filter[J]. Aircraft Engineering and Aerospace Technology,2022,94(6):848-861
[25] 王志海. 光行差公式的理论推导[J]. 工科物理,1991(1):9-12,34
WANG Z H. Theoretical derivation of aberration formula[J]. Physics and Engineering,1991(1):9-12,34
[26] LINDEGREN L,HERN NDEZ J,BOMBRUN A,et al. Gaia data release 2-the astrometric solution[J]. Astronomy & Astrophysics,2018,616(A2):1-25
[27] 张燕,荆武兴. 基于日地月方位信息的月球卫星自主导航[J]. 宇航学报,2005,26(4):495-498,523
ZHANG Y,JING W X. Autonomous navigation for lunar satellite basedd on the optical information of Sun-Earth-Moon[J]. Journal of Astronautics,2005,26(4):495-498,523
PDF(1643 KB)

Accesses

Citations

Detail

Sections
Recommended

/