PDF(4685 KB)
Study of Terrain Shading Judgment on Ceres Surface and Its Solar Radiation Simulation
Author information
+
1. The Academy of Digital China(Fu Jian), Fuzhou University, Fuzhou 350108, China;
2. Key Lab for Spatial Data Mining and Information Sharing of Education Ministry, Fuzhou 350108, China
Show less
History
+
Received |
Revised |
Published |
18 Nov 2022 |
19 Feb 2023 |
25 Jan 2024 |
Issue Date |
|
25 Jan 2024 |
|
As solar radiation is an important source of energy received by the surface of the planets in the solar system, accurate modeling of solar radiation on the surface of Ceres is crucial for studying the thermal environment. However, the highly undulating terrain on Ceres makes determining terrain shading coefficients challenging. While the ray tracing method can accurately determine terrain shading coefficients, it is limited by the search radius. In the paper, it examines the effects of seasonal differences, landform types, and study area size on solar radiation simulation, and concludes that a minimum threshold search radius of 74 km is required to determine actual terrain shading. Using this radius, the paper simulates solar radiation over a solar day and finds that the search radius required for accurate shading information varies with time of year and landscape type. Surface faults are most consistently influenced by the search radius, while volcanic landscapes are most significantly influenced. The global solar radiation distribution of Ceres shows a gradual decrease from low to high latitudes. Results improve the theory and method of solar radiation modeling and provide data and theoretical support for future exploration of Ceres.
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
This is a preview of subscription content, contact
us for subscripton.
References
[1] COMBE J P,SINGH S,JOHNSON K E,et al. The surface composition of Ceres' ezinu quadrangle analyzed by the dawn mission[J]. Icarus,2019,318:124-146.
[2] MCCORD T B, COMBE J P, CASTILLO-ROGEZ J C, et al. Ceres, a wet planet: the view after Dawn[J]. Geochemistry, 2022, 82(2): 125745.
[3] NORDHEIM T A,CASTILLO-ROGEZ J C,VILLARREAL M N,et al. The radiation environment of ceres and implications for surface sampling[J]. Astrobiology,2022,22(5):509-519.
[4] AHEARN M F,FELDMAN P D. Water vaporization on Ceres[J]. Icarus,1992,98(1):54-60.
[5] BARKER H W,LI Z Q. Improved simulation of clear-shy shortwave radiative-transfer in the Ccc-Gcm[J]. Journal of Climate,1995,8(9):2213-2223.
[6] WARD D M. Comparison of the surface solar-radiation budget derived from satellite data with that simulated by the Ncar Ccm2[J]. Journal of Climate,1995,8(11):2824-2842.
[7] SORI M M,Sizemore H G,Byrne S,et al. Cryovolcanic rates on ceres revealed by topography[J]. Nature Astronomy,2018,2(12):946-950.
[8] CASTILLO-ROGEZ J C,NEYEU M,SCULLY J E C,et al. Ceres:astrobiological target and possible ocean world[J]. Astrobiology,2020,20(2):269-291.
[9] WILLIAMS D A,KNEISSL T,NEESEMANN A,et al. The geology of the kerwan quadrangle of dwarf planet ceres:investigating ceres' oldest,largest impact basin[J]. Icarus,2018,316:99-113.
[10] SCHENK P,SIZEMORE H,SCHMIDT B,et al. The central pit and dome at cerealia facula bright deposit and floor deposits in occator crater,ceres:morphology,comparisons and formation[J]. Icarus,2019,320:159-187.
[11] VU T H,HODYSS R,JOHNSON P V,et al. Preferential formation of sodium salts from frozen sodium-ammonium-chloride-carbonate brines - implications for ceres' bright spots[J]. Planet Space Science,2017,141:73-77.
[12] QUICK L C,BUCZKOWSKI D L,RUESCH O,et al. A possible brine reservoir beneath occator crater:thermal and compositional evolution and formation of the cerealia dome and vinalia faculae[J]. Icarus,2019,320:119-135.
[13] 翁笃鸣. 中国太阳直接辐射的气候计算及其分布特征[J]. 太阳能学报,1986 (2):121-130.
WENG D M. Climate calculation and distribution characteristics of direct solar radiation in China[J]. Acta Energiae Solaris Sinica,1986 (2):121-130.
[14] 傅抱璞. 論坡地上的太陽輻射总量[J]. 南京大学学报(自然科学版),1958,(2):47-82.
FU B P. On Total solar radiation over sloping land[J]. Journal of Nanjing University (Natural Science),1958,(2):47-82.
[15] 傅抱璞. 坡地对於日照和太陽輻射的影响[J]. 南京大学学报(自然科学版),1958 (2):23-46.
FU B P. Effects of sloping land on sunlight and solar radiation[J]. Journal of Nanjing University (Natural Science),1958 (2):23-46.
[16] 左大康,王懿贤,陈建绥. 中国地区太阳总輻射的空間分布特征[J]. 气象学报,1963 (1):78-96.
ZUO D K,WANG Y X,CHEN J S. Spatial distribution of total solar radiation over China[J]. Acta Meteorologica Sinica,1963 (1):78-96.
[17] 曾燕,邱新法,刘绍民. 起伏地形下天文辐射分布式估算模型[J]. 地球物理学报,2005 (5):1028-1033.
ZENG Y,QIU X F,LIU S M. A distributed estimation model for astronomical radiation in undulating terrain[J]. Chinese Journal of Geophysics,2005 (5):1028-1033.
[18] 曾燕,邱新法,刘昌明,等. 基于DEM的黄河流域天文辐射空间分布[J]. 地理学报,2003 (6):810-816.
ZENG Y,QIU X F,LIU C M,et al. Spatial distribution of astronomical radiation in the yellow river basin based on DEM[J]. Acta Geographica Sinica,2003 (6):810-816.
[19] CHEN N. Deriving the slope-mean shielded astronomical solar radiation spectrum and slope-mean possible sunshine duration spectrum over the loess plateau[J]. Journal of Mountain Science,2020,17(1):133-146.
[20] 刘奇祺,陈楠,林偲蔚. 月表可照时间谱和太阳辐射谱空间分布特征研究[J]. 深空探测学报(中英文),2021,8(6):614-624.
LIU Q Q,CHEN N,LIN S W. Study on spatial distribution characteristics of time spectrum and solar radiation spectrum of lunar surface[J]. Journal of Deep Space Exploration (Chinese & English),2021,8(6):614-624.
[21] SPAGNUOLO M G,CARBALLO F D,FIGUERA R M,et al. MarsLux:HI-resolution illumination maps generator for Mars[J]. Earth Space Science,2019,6(1):146-155.
[22] STERN R J,GERYA T,TACKLEY P J. Stagnant lid tectonics:perspectives from silicate planets,dwarf planets,large moons,and large asteroids[J]. Geoscience Frontiers,2018,9(1):103-119.
[23] 曾燕,邱新法,缪启龙,等. 起伏地形下我国可照时间的空间分布[J]. 自然科学进展,2003(5):99-102+116.
ZENG Y,QIU X F,MIAO Q L,et al. Spatial distribution of observable time under undulating terrain[J]. Progress in Natural Science,2003(5):99-102+116.
[24] 郭连鹤,陈楠. 模拟火星地表可照时间的搜索半径研究[J]. 测绘科学,2021,46(9):157-167
GUO L H,CHEN N. Research on search radius of simulated martian surface illuminable time[J]. Science of Surveying and Mapping,2021,46(9):157-167.
[25] RAMBAUX N, CASTILLO-ROGEZ J, DEHANT V, et al. Constraining Ceres’interior from its rotational motion[J]. Astronomy & Astrophysics, 2011, 535: A43.
[26] RUSSELL C T,RAYMOND C A. The Dawn mission to minor planets 4 Vesta and 1 Ceres foreword[J]. Space Science Reviews,2011,163(1-4):1-2.
[27] SCHORGHOFER N,MAZARICO E,PLATZ T,et al. The permanently shadowed regions of dwarf planet Ceres[J]. Geophysical Research Letters,2016,43(13):6783-6789.
[28] MARCHI S, ERMAKOV A I, RAYMOND C A, et al. The missing large impact craters on Ceres[J]. Nature Communications, 2016, 7(1): 12257.
[29] KROHN K, VON DER GATHEN I, BUCZKOWSKI D L, et al. Fracture geometry and statistics of Ceres’ floor fractures[J]. Planetary and Space Science, 2020, 187: 104955.
[30] BUCZKOWSKI D L, SCHMIDT B E, WILLIAMS D A, et al. The geomorphology of Ceres[J]. Science, 2016, 353(6303): aaf4332.
[31] PARK R S, FOLKNER W M, WILLIAMS J G, et al. The JPL planetary and lunar ephemerides DE440 and DE441[J]. The Astronomical Journal, 2021, 161(3): 105.
[32] 张刚,汤国安,宋效东,等. 黄土高原可照时间空间分布特征研究[J]. 武汉大学学报(信息科学版),2015,40(6):834-840.
ZHANG G,TANG G A,SONG X D,et al. Study on temporal and spatial distribution characteristics of the loess plateau[J]. Geomatics and Information Science of Wuhan University,2015,40(6):834-840.
[33] 贺丹. 不同分辨率DEM提取地形因子的适宜分析窗口研究[D]. 西安:西北大学,2012.
HE D. Study on the suitable window of extraction of topographic factors from different resolution DEM[D]. Xi’an:Northwestern University,2012.
[34] 陈楠,王钦敏,汤国安. 黄土高原丘坡信息DEM提取算法的应用[J]. 地球信息科学,2006(3):69-75.
CHEN N,WANG Q M,TANG G A. Application of dem extraction algorithm on slope information of loess plateau[J]. Geo-information Science,2006(3):69-75.
[35] 李占清,翁笃呜. 一个计算山地日照时间的计算机模式[J]. 科学通报,1987(17):1333-1335.
LI Z Q,WENG D M. A computer model for calculating daylight hours in mountainous areas[J]. Chinese Science Bulletin,1987(17):1333-1335.