PDF(1172 KB)
Topic:Technology of Mars Orbiting Exploration
Topic:Technology of Mars Orbiting Exploration
Planning for Extending Phobos Approaching Mission of Mars Orbiter Tianwen-1: Trajectory Design and Analysis
- ZHENG Huixin1,2, XIE Pan1,2, LI Haiyang1,2, ZHU Xinbo1,2
Author information
+
1. Shanghai Institute of Satellite Engineering, Shanghai 201109, China;
2. Shanghai Key Laboratory of Deep Space Exploration Technology, Shanghai 201109, China
Show less
History
+
Received |
Revised |
Published |
22 Aug 2022 |
13 Dec 2022 |
26 Apr 2023 |
Issue Date |
|
26 Apr 2023 |
|
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
This is a preview of subscription content, contact
us for subscripton.
References
[1] 吴伟仁,于登云. 深空探测发展与未来关键技术[J]. 深空探测学报(中英文),2014,1(1):5-17
WU W R,YU D Y. Development of deep space exploration and its future key technologies[J]. Journal of Deep Space Exploration,2014,1(1):5-17
[2] 朱新波,谢攀,徐亮,等. “天问一号”火星环绕器总体设计综述[J]. 航天返回与遥感,2021,42(3):1-12
ZHU X B,XIE P,XU L,et al. Summary of the overall design of Mars orbiter of Tianwen-1[J]. Spacecraft Recovery and Remote Sensing,2021,42(3):1-12
[3] 中国科学院月球与深空探测总体部. 月球与深空探测[M]. 广州:广东科技出版社,2014:266-344.
[4] 朱新波,张玉花,徐亮,等. 火星环绕器行星际飞行设计与实现[J]. 上海航天(中英文),2022,39(S1):87-95
ZHU X B,ZHANG Y H,XU L,et al. Design and realization of interplanetary flight for Mars orbiter[J]. Aerospace Shanghai (Chinese and English),2022,39(S1):87-95
[5] 耿言,陈刚. 天问一号完成既定科学探测任务[J]. 国防科技工业,2022(7):52-53
GEN Y,CHEN G. Tianwen-1 has completed its planned scientific exploration mission[J]. Defense Science,Technology and Industry,2022(7):52-53
[6] GIL P J S,SCHWARTZ J. Simulations of quasi-satellite orbits around Phobos[J]. Journal of Guidance,Control,and Dynamics,2010,33(3):901-914
[7] 吴晓杰,王悦,徐世杰. 考虑星历的火卫一邻近区域限制性多体问题建模与分析[J]. 动力学与控制学报,2021,19(2):1-7
WU X J,WANG Y,XU S J. Modeling and analysis of the restricted many-body problem in the vicinity of Phobos considering ephemeris[J]. Journal of Dynamics and Control,2021,19(2):1-7
[8] 杨轩. 火星探测器精密定轨定位与火卫一低阶重力场研究 [D]. 武汉:武汉大学,2020.
YANG X. Mars spacecraft precise orbit determination and Phobos gravity field recovery [D]. Wuhan:Wuhan University,2020.
[9] 刘林,汤靖师. 卫星轨道理论与应用[M]. 北京:电子工业出版社,2015.
[10] 韩波. 行星探测中的大气制动技术研究[D]. 杭州:浙江大学,2010.
HAN B. Research on aerobraking of the planetary exploration [D]. Hangzhou:Zhejiang University,2010.
[11] LYONS D T,BEERER J G,ESPOSITO P,et al. Mars global surveyor:aerobraking mission overview[J]. Journal of Spacecraft and Rockets,1999,6(3):307-313
[12] SMITH J C,BELL J L. 2001 Mars Odyssey aerobraking[J]. Journal of Spacecraft and Rockets,2015,42(3):406-415
[13] LONG S M ,YOU T H ,HALSELL C A ,et al. Mars reconnaissance orbiter aerobraking daily operations and collision avoidance [C]//The 20th International Symposium on Space Flight Dynamics. USA:[s. n. ]:2007.
[14] LEE Y,BENNA M,MAHAFFY P R. MAVEN NGIMS measurements of the Martian Ionosphere during the aerobraking campaign [C]//The 9th International Conference on Mars. Pasadena,USA:[s. n. ]:2019.
[15] DENIS M,SCHMITZ P,SANGIORGI S,et al. Thousand times through the atmosphere of Mars:aerobraking the ExoMars trace gas orbiter [C]//The 15th International Conference on Space Operations. France:[s. n. ],2018.
[16] 艾远行. 火星气动捕获轨迹设计与制导方法研究[D]. 哈尔滨:哈尔滨工业大学,2017.
AI Y X. Mars aerocapture trajectory design and Guidance [D]. Harbin:Harbin Institute of Technology,2017.
[17] DAVID A. Spencer and robert tolson. aerobraking cost and risk decisions[J]. Journal of Spacecraft and Rockets [J]. 2007,44(6):1285-1293.