A Tentative Conception of Building Lunar Farm with Lava Tube

XIE Gengxin1,2, HAN Ya1,2, YAN Ming3, XIONG XIN1,2, DING Jinghang1,2, WU Liping1,2

PDF(1822 KB)
PDF(1822 KB)
Journal of Deep Space Exploration ›› 2023, Vol. 10 ›› Issue (5) : 512-524. DOI: 10.15982/j.issn.2096-9287.2023.20220060
Topic: Scheme and Key Technologies for the Future Lunar Resident Base
Topic: Scheme and Key Technologies for the Future Lunar Resident Base

A Tentative Conception of Building Lunar Farm with Lava Tube

  • XIE Gengxin1,2, HAN Ya1,2, YAN Ming3, XIONG XIN1,2, DING Jinghang1,2, WU Liping1,2
Author information +
History +

Abstract

First, the natural advantages of lunar lava tubes and the research on extraterrestrial farms were summarized. Then key technologies for in-situ resource utilization of the moon were summarized, the basic idea for lunar farm construction in lunar lava tubes was given, and a layout of lunar farm based on lunar lava tube was put forward. Finally, the technical difficulties for lunar farm were discussed. This paper provides new reference for lunar farm construction in lava tube.

Keywords

lunar farm / lunar lava tube / in-situ resource utilization of the Moon

Cite this article

Download citation ▾
XIE Gengxin, HAN Ya, YAN Ming, XIONG XIN, DING Jinghang, WU Liping. A Tentative Conception of Building Lunar Farm with Lava Tube. Journal of Deep Space Exploration, 2023, 10(5): 512‒524 https://doi.org/10.15982/j.issn.2096-9287.2023.20220060

References

[1] 李大耀. 论月球资源和航天月球探测[J]. 航天返回与遥感,2004,25(1):60-64.LI D Y. On Moon resources and lunar exprolation by spacecraft[J]. Spacecraft Recovery & Remote Sensing,2004,25(1):60-64.
[2] CRAWFORD I A. Lunar resources:a review[J]. Progress in Physical Geography-Earth and Environment,2015,39(2):137-167.
[3] 杨建中,吴琼,于登云,等. 无人月球科考站构建与运行关键技术初探[J]. 深空探测学报(中英文),2020,7(2):111-117.YANG J Z,WU Q,YU D Y,et al. Preliminary study on key technologies for construction and operation of robotics lunar scientific base[J]. Journal of Deep Space Exploration,2020,7(2):111-117.
[4] ARYA A S,RAJASEKHAR R P,THANGJAM G,et al. Detection of potential site for future human habitability on the Moon using Chandrayaan-1 data[J]. Current Science,2011,100(4):524-529.
[5] WAGNER R V,ROBINSON M S. Distribution,formation mechanisms,and significance of lunar pits[J]. Icarus,2014,237:52-60.
[6] THESNIYA P M,RAJESH V J. Encyclopedia of lunar science[M]. Cham: Springer International Publishing,2020:1-15.
[7] NASER M Z,CHEHAB A I. Materials and design concepts for space-resilient structures[J]. Progress in Aerospace Sciences,2018,98:74-90.
[8] MARI N,GROEMER G,SEJKORA N. Mars:a volcanic world[M]. Cham:Springer International Publishing,2021:279-307.
[9] DE ANGELIS G,WILSON J W,CLOWDSLEY M S,et al. Lunar lava tube radiation safety analysis[J]. Journal of Radiation Research,2002,43:41-45.
[10] 唐永康,吴志强,董文平,等. 空间植物栽培技术分析与思考[J]. 植物生理学报,2020,56(1):1-10.TAN Y K,WU Z Q,DONG W P,et al. Analysis and review on plant cultivation techniques in space[J]. Plant Physiology Journal,2020,56(1):1-10.
[11] LIU Y, XIE G, YANG Q, et al. Biotechnological development of plants for space agriculture[J]. Nature Communications, 2021, 12(1):1-3.
[12] CASTELVECCHI D,TATALOVIC M. Plant sprouts on the Moon for first time ever [EB/OL]. (2019)[2020-06-16]. https://www.nature.com/articles/d41586-019-00159-0.
[13] CUI J J, YI Z H, FU Y M, et al. Simulated microgravity shapes the endophytic bacterial community by affecting wheat root metabolism [J]. Environmental Microbiology, 2022, 24(8): 3355-3368.
[14] COWLES J R,SCHELD H W,LEMAY R,et al. Growth and lignification in seedlings exposed to eight days of microgravity[J]. Annals of Botany,1984,54(S3):33-48.
[15] KUANG A,POPOVA A,XIAO Y,et al. Pollination and embryo development in Brassica rapa L. in microgravity[J]. International Journal of Plant Sciences,2000,161(2):203-211.
[16] ILIEVA I,IVANOVA T,NAYDENOV Y,et al. Plant experiments with light-emitting diode module in Svet space greenhouse[J]. Advances in Space Research,2010,46(7):840-845.
[17] MORROW R C, BULA R J, TIBBITTS T W, et al. The Astroculture(TM) flight experiment series, validating technologies for growing plants in space[J]. Advances in Space Research the Official Journal of the Committee on Space Research, 1994,14(11): 29-37
[18] LINK B M, DURST S J, ZHOU W, et al. Seed-to-seed growth of Arabidopsis thaliana on the International Space Station[J]. Advances in Space Research, 2003, 31(10): 2237-2243.
[19] MORROW R C, CRABB T M. Biomass Production System (BPS) plant growth unit[J]. Advances in Space Research, 2000, 26(2): 289-298.
[20] KISS J Z,AANES G,SCHIEFLOE M,et al. Changes in operational procedures to improve spaceflight experiments in plant biology in the European Modular Cultivation System[J]. Advances in Space Research,2014,53(5):818-827.
[21] 张涛,郑伟波,卢晋人,等. “实践”八号卫星高等植物培养箱[J]. 载人航天,2007(4):4-6+35.ZHANG T,ZHENG W B,LU J R,et al "Practice" 8 satellite higher plant incubator [J] Manned Spaceflight,2007(4):4-6+35.
[22] YANO S,KASAHARA H,MASUDA D,et al. Improvements in and actual performance of the plant experiment unit onboard Kibo,the Japanese experiment module on the international space station[J]. Advances in Space Research,2013,51(5):780-788.
[23] LI X,RICHTER P R,HAO Z,et al. Operation of an enclosed aquatic ecosystem in the Shenzhou-8 mission[J]. Acta Astronautica,2017,134:17-22.
[24] BURGNER S E,NEMALI K,MASSA G D,et al. Growth and photosynthetic responses of Chinese cabbage (Brassica rapa L. cv. Tokyo Bekana) to continuously elevated carbon dioxide in a simulated Space Station "Veggie" crop-production environment[J]. Life Sciences in Space Research,2020,27:83-88.
[25] 景海鹏,陈冬,赵丕盛,等. 空间微重力下植物栽培水分养分控制研究[J]. 自动化学报,2018,44(10):1764-1770.JING H P,CHEN D,ZHAO P S,et al. Investigation on water and nutrition control of plant growth under microgravity in space[J]. Acta Automatica Sinica,2018,44(10):1764-1770.
[26] 胡大伟,付玉明,杜小杰,等. 生物再生生命保障地基实验系统气密性评价[J]. 载人航天,2016,22(3):399-405.HU D W,FU Y M,DU X J,et al Air tightness evaluation of biological regeneration life support foundation experimental system [J]. Manned Spaceflight,2016,22(3):399-405.
[27] 钟剑富,李家练,刘厚诚,等. 受控生态生保系统中马铃薯栽培研究进展[J]. 载人航天,2022,28(2):279-284.ZHONG J F,LI J L,LIU H C,et al. Research progress of potato cultivation in CELSS[J]. Manned Spaceflight,2022,28(2):279-284.
[28] LIU H, YAO Z K, FU Y M, et al. Review of research into bioregenerative life support system(s) which can support humans living in space [J]. Life Sciences in Space Research, 2021, 31:113-120.
[29] 郭双生. 长期载人航天生命保障地面模拟装置——“BIOS-3”的发展历史、现状与前景[J]. 大自然探索,1995(2):36-41.GUO S S. Development history,present situation and prospect of BIOS-3,a ground simulation device for long-term manned spaceflight life support[J]. Nature Exploration,1995(2):36-41.
[30] 郭双生. 美国长期载人航天生命保障地面模拟装置——“BPC”的研究历史、现状与展望[J]. 大自然探索,1996(1):34-40.GUO S S. Research history,present situation and prospect of "BPC",a ground simulation device for long-term manned spaceflight in the United States[J]. Nature Exploration,1996(1):34-40.
[31] OHYA H,OSHIMA T,NITTA K. Survey of CELSS concepts and preliminary research in Japan[J]. Advances in Space Research :the Official Journal of the Committee on Space Research (COSPAR),1984,4(12):271-277.
[32] 郭双生,董文平,艾为党,等. 2人30天受控生态生保系统物质流调控技术研究[J]. 载人航天,2013,19(5):67-74.GUO S S,DONG W P,AI W D,et al. Study on material flow control technology of two person 30 day controlled ecological life support system[J]. Manned Spaceflight,2013,19(5):67-74.
[33] FU Y,LI L,XIE B,et al. How to establish a bioregenerative life support system for long-term crewed missions to the Moon or Mars[J]. Astrobiology,2016,16(12):925-936.
[34] FU Y, YI Z, DU Y, et al. Establishment of a closed artificial ecosystem to ensure human long-term survival on the Moon[J]. Cold Spring Harbor Laboratory, 2021, 1(1): 1-5.
[35] 李莹辉,左永亮. “绿航星际”——4人180天受控生态生保系统集成试验圆满收官[J]. 国际太空,2017(1):14-18.LI Y H,ZUO Y L. “Green Aviation star” — 4 people 180 day controlled ecological life support system integration test successfully concluded[J] International Space,2017(1):14-18.
[36] 李志杰,果琳丽. 月球原位资源利用技术研究[J]. 国际太空,2017(3):44-50.LI Z J,GUO L L. Research on the technology of lunar in-situ resource utilization[J]. Space International,2017(3):44-50.
[37] BONANNO A, BERNOLD L E. Exploratory review of sintered lunar soil based on the results of the thermal analysis of a lunar soil simulant [J]. Journal of Aerospace Engineering, 2015, 28(4): 4014114.
[38] HOU X, DING T, CHEN T, et al. Constitutive properties of irregularly shaped lunar soil simulant particles [J]. Powder Technology, 2019, 346: 137- 149.
[39] ZHOU C,TANG H,LI X,et al. Effects of ilmenite on the properties of microwave-sintered lunar regolith simulant [J]. Journal of Aerospace Engineering,2021,34(6):6021006.1-6021006.8.
[40] LIU M,TANG W,DUAN W,et al. Digital light processing of lunar regolith structures with high mechanical properties[J]. Ceramics International,2019,45(5):5829-5836.
[41] 王超,张光,吕晓辰,等. 模拟月壤激光熔融成型工艺参数试验初探[J]. 航天器环境工程,2021,38(5):575-580.WANG C,ZHANG G,LÜ X C,et al. Experimental study of the parameters of laser melting molding process with regard to simulated lunar soil[J]. Spacecraft Environment Engineering,2021,38(5):575-580.
[42] BUCHNER C,PAWELKE R H,SCHLAUF T,et al. A new planetary structure fabrication process using phosphoric acid[J]. Acta Astronautica,2018,143:272-284.
[43] HOBOSYAN M A, MARTIROSYAN K S. Consolidation of lunar regolith simulant by activated thermite reactions [J]. Journal of Aerospace Engineering, 2015, 28(4): 1-9.
[44] WILHELM S, CURBACH M. Manufacturing of lunar concrete by steam[C]//Proceedings of Earth & Space 2014: Engineering for Extreme Environments. Guangzhou, China: [s. n.], 2014.
[45] 秦利锋,林启美,薛彩荣,等. 月球土壤的生物改良试验:固氮蓝藻对模拟月壤肥力的影响[J]. 航天医学与医学工程,2020,33(6):497-503.QIN L F,LIN Q M,XUE C R,et al. Bio-improving experiment of lunar soil:effect of nitrogen-fixing cyanobacteria on fertility of simulated lunar soil[J]. Space Medicine & Medical Engineering,2020,33(6):497-503.
[46] YAO Z,FENG J,LIU H. Bioweathering improvement of lunar soil simulant improves the cultivated wheat's seedling length[J]. Acta Astronautica,2022,193:1-8.
[47] HAVILAND H F. The human factor in the settlement of the Moon:an interdisciplinary approach[M]. Cham:Springer International Publishing,2021:43-53.
[48] ELLERY A. Generating and storing power on the moon using in situ resources[J]. Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering,2022,236(6):1045-1063.
[49] LU X,MA R,WANG C,et al. Performance analysis of a lunar based solar thermal power system with regolith thermal storage[J]. Energy,2016,107:227-233.
[50] 雷英俊,朱立颖,张文佳. 我国深空探测任务电源系统发展需求[J]. 深空探测学报(中英文),2020,7(1):35-40+46.LEI Y J,ZHU L Y,ZHANG W J. Research on power system development of Chinese deep space exploration [J]. Journal of Deep Space Exploration 2020,7(1):35-40+46.
[51] 任德鹏,李青,许映乔. 月球基地能源系统初步研究[J]. 深空探测学报(中英文),2018,5(6):561-568.REN D P,LI Q,XU Y Q. Preliminary research on the lunar base energy system[J]. Journal of Deep Space Exploration,2018,5(6):561-568.
[52] WITTENBERG L J,SANTARIUS J F,KULCINSKI G L. Lunar source of He-3 for commercial fusion power[J]. Fusion Technology,1986,10(2):167-178.
[53] 谢和平,李存宝,孙立成,等. 月球原位能源支撑技术探索构想[J]. 工程科学与技术,2020,52(3):1-9.XIE H P,LI C B,SUN L C,et al. Conceptualization of in-situ energy support technology on the Moon[J]. Advanced Engineering Sciences,2020,52(3):1-9.
[54] PIQUETTE M,HORANYI M,STERN S A. Laboratory experiments to investigate sublimation rates of water ice in nighttime lunar regolith[J]. Icarus,2017,293:180-184.
[55] HARRELL M J,SCHROEDER G S,DAIRE S A. Handbook of life support systems for spacecraft and extraterrestrial habitats[M]. Cham:Springer International Publishing,2020:1-23.
[56] HONNIBALL C I,LUCEY P G,LI S,et al. Molecular water detected on the sunlit Moon by SOFIA[J]. Nature Astronomy,2021,5(2):121-127.
[57] 王超,张晓静,姚伟. 月球极区水冰资源原位开发利用研究进展[J]. 深空探测学报(中英文),2020,7(3):241-247.WANG C,ZHANG X J,YAO W. Research prospects of lunar polar water ice resource in-situ utilization[J]. Journal of Deep Space Exploration,2020,7(3):241-247.
[58] SARGEANT H M, BARBER S J, ANAND M, et al. Hydrogen reduction of lunar samples in a static system for a water production demonstration on the Moon [J]. Planetary and Space Science, 2021(5): 105287.
[59] 李芃,王世杰,李雄耀,等. 利用月球含氧矿物制取氧气的方法学比较[J]. 矿物岩石地球化学通报,2009,28(2):183-188.LI P,WANG S J,LI X Y,et al. Review of oxygen production using oxygenous minerals on the Moon[J]. Bulletin of Mineralogy Petrology and Geochemistry,2009,28(2):183-188.
[60] 张全生,郭东莉,夏骥. 为月球资源就地应用的LiOH电解制氧技术分析和实验观察[J]. 航天医学与医学工程,2013,26(3):211-214.ZHANG Q S,GUO D L,XIA J. Analysis and experimental study on LiOH electrolysis process used for in-situ-resources usage of lunar mineral resources[J]. Space Medicine & Medical Engineering,2013,26(3):211-214.
[61] BENAROYA H,MOTTAGHI S,PORTER Z. Magnesium as an ISRU-derived resource for lunar structures[J]. Journal of Aerospace Engineering,2013,26(1):152-159.
[62] 李伟,东岩,高强,等. 我国建筑气密性研究现状与分析[J]. 消防科学与技术,2019,38(8):1097-1098+1101.LI W,DONG Y,GAO Q,et al. Research status and analysis of building air tightness in China [J]. Fire Science and Technology,2019,38(8):1097-1098+1101.
[63] 于登云,张哲,泮斌峰,等. 深空探测人工智能技术研究与展望[J]. 深空探测学报(中英文),2020,7(1):11-23.YU D Y,ZHANG Z,PAN B F,et al. Development and trend of artificial intelligent in deep space exploration[J]. Journal of Deep Space Exploration,2020,7(1):11-23.
[64] ANDERSON R C, ADAMO D, BUCZKOWSKI D, et al. Next frontier in planetary geological reconnaissance: low-latency telepresence [J]. Icarus, 2021, 368: 114558.
[65] 张志贤,果琳丽,戚发轫. 月面人机联合探测概念研究[J]. 载人航天,2014,20(5):432-442.ZHANG Z X,GUO L L,QI F R. Conceptual study on crew-robot coordinated exploration on lunar surface [J]. Manned Spaceflight,20(5):432-442.
[66] 付玉明,高寒,李鸿雁,等. 生物再生生命保障系统内的植物相关微生物研究进展[J]. 航天医学与医学工程,2017,30(2):152-156.FU Y M,GAO H,LI H Y,et al. Research progress of microorganisms associated with plants in bioregenerative life support system[J]. Space Medicine & Medical Engineering,2017,30(2):152-156.
[67] 於娟,付玉明. 影响植物栽培的空间飞行因素[J]. 航天医学与医学工程,2015,28(1):67-73.YU J,FU Y M. Factors influencing plant cultivation in space flight[J]. Space Medicine & Medical Engineering,2014,27( 5) :67-73.
[68] SUN R X,YI Z H,FU Y M,et al. Dynamic changes in rhizosphere fungi in different developmental stages of wheat in a confined and isolated environment[J]. Applied Microbiology and Biotechnology,2022,106(1):441-453.
[69] YANG J, FU Y, LIU H. Microbiomes of air dust collected during the ground-based closed biorege- nerative life support experiment "Lunar Palace 365" [J]. Environmental Microbiome, 2022, 17(1): 1-20.
[70] 杨建楼,付玉明,刘红. 载人航天器内腐蚀材料表面原位修护装置设计. 航天器环境工程[J]. 2022,39(3):255-261.YANG J L,FU Y M,LIU H. Design of in situ repair device for the microbial corrosion surface material used in manned spacecraft[J]. Spacecraft Environment Engineering,2022,39(3):255-261.
[71] 杨松林,丁平,赵成坚,等. 中国空间站水回收系统关键技术分析[J]. 航天医学与医学工程,2013,26(3):221-226.YANG S L,DING P,ZHAO C J,et al. Techniques for water reclamation system in Chinese Space Station[J]. Space Medicine & Medical Engineering,2013,26(3):221-226.
[72] 果琳丽,李志杰,齐玢,等. 一种综合式载人月球基地总体方案及建造规划设想[J]. 航天返回与遥感,2014,35(6):1-10.GUO L L,LI Z J,QI B,et al. An overall tentative plan and construction blueprint of manned lunar base[J]. Spacecraft Recovery & Remote Sensing,2014,35(6):1-10.
[73] 熊凯,尹永利,曹勇,等. 未来太空基地内氢气和二氧化碳消除技术研究进展[J]. 载人航天,2022,28(3):412-418.XIONG K,YIN Y L,CAO Y,et al. Research progress of hydrogen and carbon dioxide elimination technology in future space bases[J]. Manned Spaceflight,2022,28(3):412-418.
[74] FURFARO R, SADLER P, GIACOMELLI G. Mars-Lunar Greenhouse (M-LGH) prototype for bioregenerative life support systems in future planetary outposts[C]//Proceedings of 2016 International Astronautical Congress. Guadalajara, Mexico: [s. n.], 2016.
[75] DU Z,MA Y,ZHAO H,et al. High CO2-tolerant and cobalt-free dual-phase membranes for pure oxygen separation[J]. Journal of Membrane Science,2019,574:243-251.
[76] DETRELL G, GRÍFUL P E, MESSERSCHMId E. Reliability versus mass optimization of CO2 extraction technologies for long duration missions[J]. Advances in Space Research, 2016. 57(11): 2337-2346.
[77] NABITY J A,KILLELEA J V,SHAFFER B A,et al. Ionic-liquid-based contactors for carbon dioxide removal from simulated spacecraft cabin atmospheres[J]. Journal of Spacecraft and Rockets,2020,57(6):1350-1361.
[78] JADHAV S G, VAIDYA P D, BHANAGE B M, et al. Catalytic carbon dioxide hydrogenation to methanol: a review of recent studies[J]. Chemical Engineering Research and Design, 2014. 92(11): 2557-2567.
PDF(1822 KB)

Accesses

Citations

Detail

Sections
Recommended

/