PDF(1822 KB)
A Tentative Conception of Building Lunar Farm with Lava Tube
- XIE Gengxin1,2, HAN Ya1,2, YAN Ming3, XIONG XIN1,2, DING Jinghang1,2, WU Liping1,2
Author information
+
1. College of Environment and Ecology, Chongqing University, Chongqing 400044, China;
2. Center of Space Exploration, Ministry of Education, Chongqing 400044, China;
3. College of Environmental Science & Engineering, Hunan University, Changsha 410012, China
Show less
History
+
Received |
Revised |
Published |
16 Jun 2022 |
29 Jul 2022 |
21 Nov 2023 |
Issue Date |
|
21 Nov 2023 |
|
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
This is a preview of subscription content, contact
us for subscripton.
References
[1] 李大耀. 论月球资源和航天月球探测[J]. 航天返回与遥感,2004,25(1):60-64.LI D Y. On Moon resources and lunar exprolation by spacecraft[J]. Spacecraft Recovery & Remote Sensing,2004,25(1):60-64.
[2] CRAWFORD I A. Lunar resources:a review[J]. Progress in Physical Geography-Earth and Environment,2015,39(2):137-167.
[3] 杨建中,吴琼,于登云,等. 无人月球科考站构建与运行关键技术初探[J]. 深空探测学报(中英文),2020,7(2):111-117.YANG J Z,WU Q,YU D Y,et al. Preliminary study on key technologies for construction and operation of robotics lunar scientific base[J]. Journal of Deep Space Exploration,2020,7(2):111-117.
[4] ARYA A S,RAJASEKHAR R P,THANGJAM G,et al. Detection of potential site for future human habitability on the Moon using Chandrayaan-1 data[J]. Current Science,2011,100(4):524-529.
[5] WAGNER R V,ROBINSON M S. Distribution,formation mechanisms,and significance of lunar pits[J]. Icarus,2014,237:52-60.
[6] THESNIYA P M,RAJESH V J. Encyclopedia of lunar science[M]. Cham: Springer International Publishing,2020:1-15.
[7] NASER M Z,CHEHAB A I. Materials and design concepts for space-resilient structures[J]. Progress in Aerospace Sciences,2018,98:74-90.
[8] MARI N,GROEMER G,SEJKORA N. Mars:a volcanic world[M]. Cham:Springer International Publishing,2021:279-307.
[9] DE ANGELIS G,WILSON J W,CLOWDSLEY M S,et al. Lunar lava tube radiation safety analysis[J]. Journal of Radiation Research,2002,43:41-45.
[10] 唐永康,吴志强,董文平,等. 空间植物栽培技术分析与思考[J]. 植物生理学报,2020,56(1):1-10.TAN Y K,WU Z Q,DONG W P,et al. Analysis and review on plant cultivation techniques in space[J]. Plant Physiology Journal,2020,56(1):1-10.
[11] LIU Y, XIE G, YANG Q, et al. Biotechnological development of plants for space agriculture[J]. Nature Communications, 2021, 12(1):1-3.
[12] CASTELVECCHI D,TATALOVIC M. Plant sprouts on the Moon for first time ever [EB/OL]. (2019)[2020-06-16]. https://www.nature.com/articles/d41586-019-00159-0.
[13] CUI J J, YI Z H, FU Y M, et al. Simulated microgravity shapes the endophytic bacterial community by affecting wheat root metabolism [J]. Environmental Microbiology, 2022, 24(8): 3355-3368.
[14] COWLES J R,SCHELD H W,LEMAY R,et al. Growth and lignification in seedlings exposed to eight days of microgravity[J]. Annals of Botany,1984,54(S3):33-48.
[15] KUANG A,POPOVA A,XIAO Y,et al. Pollination and embryo development in Brassica rapa L. in microgravity[J]. International Journal of Plant Sciences,2000,161(2):203-211.
[16] ILIEVA I,IVANOVA T,NAYDENOV Y,et al. Plant experiments with light-emitting diode module in Svet space greenhouse[J]. Advances in Space Research,2010,46(7):840-845.
[17] MORROW R C, BULA R J, TIBBITTS T W, et al. The Astroculture(TM) flight experiment series, validating technologies for growing plants in space[J]. Advances in Space Research the Official Journal of the Committee on Space Research, 1994,14(11): 29-37
[18] LINK B M, DURST S J, ZHOU W, et al. Seed-to-seed growth of Arabidopsis thaliana on the International Space Station[J]. Advances in Space Research, 2003, 31(10): 2237-2243.
[19] MORROW R C, CRABB T M. Biomass Production System (BPS) plant growth unit[J]. Advances in Space Research, 2000, 26(2): 289-298.
[20] KISS J Z,AANES G,SCHIEFLOE M,et al. Changes in operational procedures to improve spaceflight experiments in plant biology in the European Modular Cultivation System[J]. Advances in Space Research,2014,53(5):818-827.
[21] 张涛,郑伟波,卢晋人,等. “实践”八号卫星高等植物培养箱[J]. 载人航天,2007(4):4-6+35.ZHANG T,ZHENG W B,LU J R,et al "Practice" 8 satellite higher plant incubator [J] Manned Spaceflight,2007(4):4-6+35.
[22] YANO S,KASAHARA H,MASUDA D,et al. Improvements in and actual performance of the plant experiment unit onboard Kibo,the Japanese experiment module on the international space station[J]. Advances in Space Research,2013,51(5):780-788.
[23] LI X,RICHTER P R,HAO Z,et al. Operation of an enclosed aquatic ecosystem in the Shenzhou-8 mission[J]. Acta Astronautica,2017,134:17-22.
[24] BURGNER S E,NEMALI K,MASSA G D,et al. Growth and photosynthetic responses of Chinese cabbage (Brassica rapa L. cv. Tokyo Bekana) to continuously elevated carbon dioxide in a simulated Space Station "Veggie" crop-production environment[J]. Life Sciences in Space Research,2020,27:83-88.
[25] 景海鹏,陈冬,赵丕盛,等. 空间微重力下植物栽培水分养分控制研究[J]. 自动化学报,2018,44(10):1764-1770.JING H P,CHEN D,ZHAO P S,et al. Investigation on water and nutrition control of plant growth under microgravity in space[J]. Acta Automatica Sinica,2018,44(10):1764-1770.
[26] 胡大伟,付玉明,杜小杰,等. 生物再生生命保障地基实验系统气密性评价[J]. 载人航天,2016,22(3):399-405.HU D W,FU Y M,DU X J,et al Air tightness evaluation of biological regeneration life support foundation experimental system [J]. Manned Spaceflight,2016,22(3):399-405.
[27] 钟剑富,李家练,刘厚诚,等. 受控生态生保系统中马铃薯栽培研究进展[J]. 载人航天,2022,28(2):279-284.ZHONG J F,LI J L,LIU H C,et al. Research progress of potato cultivation in CELSS[J]. Manned Spaceflight,2022,28(2):279-284.
[28] LIU H, YAO Z K, FU Y M, et al. Review of research into bioregenerative life support system(s) which can support humans living in space [J]. Life Sciences in Space Research, 2021, 31:113-120.
[29] 郭双生. 长期载人航天生命保障地面模拟装置——“BIOS-3”的发展历史、现状与前景[J]. 大自然探索,1995(2):36-41.GUO S S. Development history,present situation and prospect of BIOS-3,a ground simulation device for long-term manned spaceflight life support[J]. Nature Exploration,1995(2):36-41.
[30] 郭双生. 美国长期载人航天生命保障地面模拟装置——“BPC”的研究历史、现状与展望[J]. 大自然探索,1996(1):34-40.GUO S S. Research history,present situation and prospect of "BPC",a ground simulation device for long-term manned spaceflight in the United States[J]. Nature Exploration,1996(1):34-40.
[31] OHYA H,OSHIMA T,NITTA K. Survey of CELSS concepts and preliminary research in Japan[J]. Advances in Space Research :the Official Journal of the Committee on Space Research (COSPAR),1984,4(12):271-277.
[32] 郭双生,董文平,艾为党,等. 2人30天受控生态生保系统物质流调控技术研究[J]. 载人航天,2013,19(5):67-74.GUO S S,DONG W P,AI W D,et al. Study on material flow control technology of two person 30 day controlled ecological life support system[J]. Manned Spaceflight,2013,19(5):67-74.
[33] FU Y,LI L,XIE B,et al. How to establish a bioregenerative life support system for long-term crewed missions to the Moon or Mars[J]. Astrobiology,2016,16(12):925-936.
[34] FU Y, YI Z, DU Y, et al. Establishment of a closed artificial ecosystem to ensure human long-term survival on the Moon[J]. Cold Spring Harbor Laboratory, 2021, 1(1): 1-5.
[35] 李莹辉,左永亮. “绿航星际”——4人180天受控生态生保系统集成试验圆满收官[J]. 国际太空,2017(1):14-18.LI Y H,ZUO Y L. “Green Aviation star” — 4 people 180 day controlled ecological life support system integration test successfully concluded[J] International Space,2017(1):14-18.
[36] 李志杰,果琳丽. 月球原位资源利用技术研究[J]. 国际太空,2017(3):44-50.LI Z J,GUO L L. Research on the technology of lunar in-situ resource utilization[J]. Space International,2017(3):44-50.
[37] BONANNO A, BERNOLD L E. Exploratory review of sintered lunar soil based on the results of the thermal analysis of a lunar soil simulant [J]. Journal of Aerospace Engineering, 2015, 28(4): 4014114.
[38] HOU X, DING T, CHEN T, et al. Constitutive properties of irregularly shaped lunar soil simulant particles [J]. Powder Technology, 2019, 346: 137- 149.
[39] ZHOU C,TANG H,LI X,et al. Effects of ilmenite on the properties of microwave-sintered lunar regolith simulant [J]. Journal of Aerospace Engineering,2021,34(6):6021006.1-6021006.8.
[40] LIU M,TANG W,DUAN W,et al. Digital light processing of lunar regolith structures with high mechanical properties[J]. Ceramics International,2019,45(5):5829-5836.
[41] 王超,张光,吕晓辰,等. 模拟月壤激光熔融成型工艺参数试验初探[J]. 航天器环境工程,2021,38(5):575-580.WANG C,ZHANG G,LÜ X C,et al. Experimental study of the parameters of laser melting molding process with regard to simulated lunar soil[J]. Spacecraft Environment Engineering,2021,38(5):575-580.
[42] BUCHNER C,PAWELKE R H,SCHLAUF T,et al. A new planetary structure fabrication process using phosphoric acid[J]. Acta Astronautica,2018,143:272-284.
[43] HOBOSYAN M A, MARTIROSYAN K S. Consolidation of lunar regolith simulant by activated thermite reactions [J]. Journal of Aerospace Engineering, 2015, 28(4): 1-9.
[44] WILHELM S, CURBACH M. Manufacturing of lunar concrete by steam[C]//Proceedings of Earth & Space 2014: Engineering for Extreme Environments. Guangzhou, China: [s. n.], 2014.
[45] 秦利锋,林启美,薛彩荣,等. 月球土壤的生物改良试验:固氮蓝藻对模拟月壤肥力的影响[J]. 航天医学与医学工程,2020,33(6):497-503.QIN L F,LIN Q M,XUE C R,et al. Bio-improving experiment of lunar soil:effect of nitrogen-fixing cyanobacteria on fertility of simulated lunar soil[J]. Space Medicine & Medical Engineering,2020,33(6):497-503.
[46] YAO Z,FENG J,LIU H. Bioweathering improvement of lunar soil simulant improves the cultivated wheat's seedling length[J]. Acta Astronautica,2022,193:1-8.
[47] HAVILAND H F. The human factor in the settlement of the Moon:an interdisciplinary approach[M]. Cham:Springer International Publishing,2021:43-53.
[48] ELLERY A. Generating and storing power on the moon using in situ resources[J]. Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering,2022,236(6):1045-1063.
[49] LU X,MA R,WANG C,et al. Performance analysis of a lunar based solar thermal power system with regolith thermal storage[J]. Energy,2016,107:227-233.
[50] 雷英俊,朱立颖,张文佳. 我国深空探测任务电源系统发展需求[J]. 深空探测学报(中英文),2020,7(1):35-40+46.LEI Y J,ZHU L Y,ZHANG W J. Research on power system development of Chinese deep space exploration [J]. Journal of Deep Space Exploration 2020,7(1):35-40+46.
[51] 任德鹏,李青,许映乔. 月球基地能源系统初步研究[J]. 深空探测学报(中英文),2018,5(6):561-568.REN D P,LI Q,XU Y Q. Preliminary research on the lunar base energy system[J]. Journal of Deep Space Exploration,2018,5(6):561-568.
[52] WITTENBERG L J,SANTARIUS J F,KULCINSKI G L. Lunar source of He-3 for commercial fusion power[J]. Fusion Technology,1986,10(2):167-178.
[53] 谢和平,李存宝,孙立成,等. 月球原位能源支撑技术探索构想[J]. 工程科学与技术,2020,52(3):1-9.XIE H P,LI C B,SUN L C,et al. Conceptualization of in-situ energy support technology on the Moon[J]. Advanced Engineering Sciences,2020,52(3):1-9.
[54] PIQUETTE M,HORANYI M,STERN S A. Laboratory experiments to investigate sublimation rates of water ice in nighttime lunar regolith[J]. Icarus,2017,293:180-184.
[55] HARRELL M J,SCHROEDER G S,DAIRE S A. Handbook of life support systems for spacecraft and extraterrestrial habitats[M]. Cham:Springer International Publishing,2020:1-23.
[56] HONNIBALL C I,LUCEY P G,LI S,et al. Molecular water detected on the sunlit Moon by SOFIA[J]. Nature Astronomy,2021,5(2):121-127.
[57] 王超,张晓静,姚伟. 月球极区水冰资源原位开发利用研究进展[J]. 深空探测学报(中英文),2020,7(3):241-247.WANG C,ZHANG X J,YAO W. Research prospects of lunar polar water ice resource in-situ utilization[J]. Journal of Deep Space Exploration,2020,7(3):241-247.
[58] SARGEANT H M, BARBER S J, ANAND M, et al. Hydrogen reduction of lunar samples in a static system for a water production demonstration on the Moon [J]. Planetary and Space Science, 2021(5): 105287.
[59] 李芃,王世杰,李雄耀,等. 利用月球含氧矿物制取氧气的方法学比较[J]. 矿物岩石地球化学通报,2009,28(2):183-188.LI P,WANG S J,LI X Y,et al. Review of oxygen production using oxygenous minerals on the Moon[J]. Bulletin of Mineralogy Petrology and Geochemistry,2009,28(2):183-188.
[60] 张全生,郭东莉,夏骥. 为月球资源就地应用的LiOH电解制氧技术分析和实验观察[J]. 航天医学与医学工程,2013,26(3):211-214.ZHANG Q S,GUO D L,XIA J. Analysis and experimental study on LiOH electrolysis process used for in-situ-resources usage of lunar mineral resources[J]. Space Medicine & Medical Engineering,2013,26(3):211-214.
[61] BENAROYA H,MOTTAGHI S,PORTER Z. Magnesium as an ISRU-derived resource for lunar structures[J]. Journal of Aerospace Engineering,2013,26(1):152-159.
[62] 李伟,东岩,高强,等. 我国建筑气密性研究现状与分析[J]. 消防科学与技术,2019,38(8):1097-1098+1101.LI W,DONG Y,GAO Q,et al. Research status and analysis of building air tightness in China [J]. Fire Science and Technology,2019,38(8):1097-1098+1101.
[63] 于登云,张哲,泮斌峰,等. 深空探测人工智能技术研究与展望[J]. 深空探测学报(中英文),2020,7(1):11-23.YU D Y,ZHANG Z,PAN B F,et al. Development and trend of artificial intelligent in deep space exploration[J]. Journal of Deep Space Exploration,2020,7(1):11-23.
[64] ANDERSON R C, ADAMO D, BUCZKOWSKI D, et al. Next frontier in planetary geological reconnaissance: low-latency telepresence [J]. Icarus, 2021, 368: 114558.
[65] 张志贤,果琳丽,戚发轫. 月面人机联合探测概念研究[J]. 载人航天,2014,20(5):432-442.ZHANG Z X,GUO L L,QI F R. Conceptual study on crew-robot coordinated exploration on lunar surface [J]. Manned Spaceflight,20(5):432-442.
[66] 付玉明,高寒,李鸿雁,等. 生物再生生命保障系统内的植物相关微生物研究进展[J]. 航天医学与医学工程,2017,30(2):152-156.FU Y M,GAO H,LI H Y,et al. Research progress of microorganisms associated with plants in bioregenerative life support system[J]. Space Medicine & Medical Engineering,2017,30(2):152-156.
[67] 於娟,付玉明. 影响植物栽培的空间飞行因素[J]. 航天医学与医学工程,2015,28(1):67-73.YU J,FU Y M. Factors influencing plant cultivation in space flight[J]. Space Medicine & Medical Engineering,2014,27( 5) :67-73.
[68] SUN R X,YI Z H,FU Y M,et al. Dynamic changes in rhizosphere fungi in different developmental stages of wheat in a confined and isolated environment[J]. Applied Microbiology and Biotechnology,2022,106(1):441-453.
[69] YANG J, FU Y, LIU H. Microbiomes of air dust collected during the ground-based closed biorege- nerative life support experiment "Lunar Palace 365" [J]. Environmental Microbiome, 2022, 17(1): 1-20.
[70] 杨建楼,付玉明,刘红. 载人航天器内腐蚀材料表面原位修护装置设计. 航天器环境工程[J]. 2022,39(3):255-261.YANG J L,FU Y M,LIU H. Design of in situ repair device for the microbial corrosion surface material used in manned spacecraft[J]. Spacecraft Environment Engineering,2022,39(3):255-261.
[71] 杨松林,丁平,赵成坚,等. 中国空间站水回收系统关键技术分析[J]. 航天医学与医学工程,2013,26(3):221-226.YANG S L,DING P,ZHAO C J,et al. Techniques for water reclamation system in Chinese Space Station[J]. Space Medicine & Medical Engineering,2013,26(3):221-226.
[72] 果琳丽,李志杰,齐玢,等. 一种综合式载人月球基地总体方案及建造规划设想[J]. 航天返回与遥感,2014,35(6):1-10.GUO L L,LI Z J,QI B,et al. An overall tentative plan and construction blueprint of manned lunar base[J]. Spacecraft Recovery & Remote Sensing,2014,35(6):1-10.
[73] 熊凯,尹永利,曹勇,等. 未来太空基地内氢气和二氧化碳消除技术研究进展[J]. 载人航天,2022,28(3):412-418.XIONG K,YIN Y L,CAO Y,et al. Research progress of hydrogen and carbon dioxide elimination technology in future space bases[J]. Manned Spaceflight,2022,28(3):412-418.
[74] FURFARO R, SADLER P, GIACOMELLI G. Mars-Lunar Greenhouse (M-LGH) prototype for bioregenerative life support systems in future planetary outposts[C]//Proceedings of 2016 International Astronautical Congress. Guadalajara, Mexico: [s. n.], 2016.
[75] DU Z,MA Y,ZHAO H,et al. High CO2-tolerant and cobalt-free dual-phase membranes for pure oxygen separation[J]. Journal of Membrane Science,2019,574:243-251.
[76] DETRELL G, GRÍFUL P E, MESSERSCHMId E. Reliability versus mass optimization of CO2 extraction technologies for long duration missions[J]. Advances in Space Research, 2016. 57(11): 2337-2346.
[77] NABITY J A,KILLELEA J V,SHAFFER B A,et al. Ionic-liquid-based contactors for carbon dioxide removal from simulated spacecraft cabin atmospheres[J]. Journal of Spacecraft and Rockets,2020,57(6):1350-1361.
[78] JADHAV S G, VAIDYA P D, BHANAGE B M, et al. Catalytic carbon dioxide hydrogenation to methanol: a review of recent studies[J]. Chemical Engineering Research and Design, 2014. 92(11): 2557-2567.