Foot-Soil Slipping Performance of Footed Robot in Soft Geology on Lunar Surface

ZHONG Shiying1,2, YUE Qianqian1,2, LING Daosheng3, ZHOU Hao4, HAN Runqi4, CONG Bori5

PDF(1670 KB)
PDF(1670 KB)
Journal of Deep Space Exploration ›› 2023, Vol. 10 ›› Issue (2) : 190-198. DOI: 10.15982/j.issn.2096-9287.2023.20220036
Research Papers

Foot-Soil Slipping Performance of Footed Robot in Soft Geology on Lunar Surface

  • ZHONG Shiying1,2, YUE Qianqian1,2, LING Daosheng3, ZHOU Hao4, HAN Runqi4, CONG Bori5
Author information +
History +

Abstract

Mobile robot is the backbone of the way of the lunar exploration,its foot end force is an important parameter for gait control. In order to study the effect of foot pattern design on foot-soil interaction in loose lunar soil on the anti-slip performance of the foot end, the anti-slip performance of three foot end pattern configurations was studied:triangle,arc and rectangle. The anti-slip performances of different pattern configurations under the same vertical load were studied through numerical simulation,and the anti-slip parameters of each pattern configuration were obtained through the equivalence principle. The results show that before the foot end pattern is completely pierced into the lunar soil,the circular arc pattern has the smallest settlement amount under the same vertical load,followed by the rectangular pattern with the triangular pattern having the largest settlement amount pattern under the same vertical load. At the same time, the slippage and stress peak of the circular arc pattern are also minimal. Under the anti-slip model of foot-soil contact surface,the equivalent shear strength of the rectangular pattern is the greatest when the same amount of subsidence is the largest,the equivalent friction angle is 33.44°,and the cohesion force 2.58 kPa,the circular arc pattern is the smallest,and its equivalent friction angle is 30.16° and the cohesion force 2.48 kPa.

Keywords

foot robot / foot-soil slipping performance / angle of friction / cohesion / finite element analysis

Cite this article

Download citation ▾
ZHONG Shiying, YUE Qianqian, LING Daosheng, ZHOU Hao, HAN Runqi, CONG Bori. Foot-Soil Slipping Performance of Footed Robot in Soft Geology on Lunar Surface. Journal of Deep Space Exploration, 2023, 10(2): 190‒198 https://doi.org/10.15982/j.issn.2096-9287.2023.20220036

References

[1] 杜希萌. 我国探月工程四期和深空探测工程将全面拉开序幕[EB/OL]. (2019-01-15)[2022-12-14].https://china.cnr.cn/yaowen/20190115/t20190115_524482310.shtml.
[2] 甘晓. 中科院院士叶培建揭秘探月工程:2020年后将在月球建立科考站[EB/OL]. (2018-10-23)[2022-12-14].https://news.sciencenet.cn/sbhtmlnews/2018/10/340123.shtm?id=340123.
[3] 杨建中,吴琼,于登云,等. 无人月球科考站构建与运行关键技术初探[J]. 深空探测学报(中英文),2020,7(2):111-117
YANG J Z,WU Q,YU D Y,et al. Preliminary study on key technologies for construction and operation of robotics lunar scientific base[J]. Journal of Deep Space Explortion,2020,7(2):111-117
[4] 汪永明,孙应秋,鲍传辉,等. 月球车足部构型参数对其驱动性能的影响研究[J]. 机械工程学报,2015,51(3):37-44
WANG Y M,SUN Y Q,BAO C H,et al. Study on the foot configuration parameters of lunar rover and it’s influences on the driving performance[J]. Journal of Mechanical Engineering,2015,51(3):37-44
[5] 陶建国,胡明,高海波,等. 月球车刚性车轮与土壤相互作用的力学模型与测试[J]. 空间工程学报,2008,28(4):340-344
TAO J G,HU M,GAO H B,et al. Modeling and measurement of rigid wheel-soil interacter for a lunar rover[J]. Chinese Journal of Space Science,2008,28(4):340-344
[6] 谷侃锋,王洪光,赵明扬,等. 滑转率对月球车车轮驱动力学特性的影响分析[J]. 计算机仿真,2008,25(6):25-29
GU K F,WANG H G,ZHAO M Y,et al. Influence of wheel slip on the dynamic characteristic of lunar rover wheels[J]. Computer Simulatton,2008,25(6):25-29
[7] 王福吉,邹有阳,马建伟,等. 重载足式机器人足底花纹结构优化设计[J]. 一重技术,2018,1(6):42-46
WANG F J,ZOU Y Y,MA J W,et al. Optimization design of sole pattern structure for heavy-duty legged robot[J]. CFHI Technology,2018,1(6):42-46
[8] 李军. 重载机器人高适应性足部的设计与研究[D]. 大连:大连理工大学,2016.
LI J. The design and research of heavy-duty robot high adaptability foot[D]. Dalian:Dalian University of Technology,2016.
[9] 邹有阳. 六足机器人落足点规划与足底花纹设计[D]. 大连:大连理工大学,2019.
ZOU Y Y. Landing point planning and foot pattern design of hexapod robot[D]. Dalian:Dalian University of Technology,2019.
[10] 贝旭颖,平雪良,高文研,等. 纵向打滑状态下轮式移动机器人轨迹跟踪控制[J]. 中国机械工程,2018,29(16):1958-1964
BEI X Y,PING X L,GAO W Y,et al. Trajectory tracking control of wheeled mobile robots under longitudinal slipping conditions[J]. China Mechanical Engineering,2018,29(16):1958-1964
[11] 杭建峰. 六足机器人行走打滑的研究[D]. 绵阳:西南科技大学,2018.
HANG J F. Research on walking and slipping of the hexapod robot[D]. Mianyang:Southwest University of Science and Technology,2018.
[12] 赵广生. 月球车轮壤作用关系的刚柔结合仿真研究[D]. 长春:吉林大学,2012.
ZHAO G S. Rigid-flexible combined simulation research on the interaction relationship between wheel and soil of the lunar rover[D]. Changchun:Jilin University,2012.
[13] 凌道盛,蒋祝金,钟世英,等. 着陆器足垫冲击模拟月壤的数值分析[J]. 浙江大学学报,2013,47(7):1171-1177
LING D S,JIANG Z J,ZHONG S Y,et al. Numerical study on iMpact of lunar lander footpad against simulant lunar soil[J]. Journal of Zhejiang University,2013,47(7):1171-1177
[14] 东南大学等合编. 土力学[M]. 第三版. 北京:中国建筑工业出版社,2016.
[15] 丁亮. 月/星球车轮地作用地面力学模型及其应用研究[D]. 哈尔滨:哈尔滨工业大学,2009.
DING L. Wheel-soil interaction terramechanics for lunae/planetary exploration rovers:modeling and application[D]. Harbin:Harbin Institute of Technology,2009.
PDF(1670 KB)

Accesses

Citations

Detail

Sections
Recommended

/