Optimal Firing Attitude Design for Mars Probe “Tianwen-1” Braking and Capture

XIN Sibo1, XU Liang1, ZHAO Xunyou1, ZHENG Yiyu1, MA Rui2

PDF(6107 KB)
PDF(6107 KB)
Journal of Deep Space Exploration ›› 2023, Vol. 10 ›› Issue (1) : 19-27. DOI: 10.15982/j.issn.2096-9287.2023.20220002
Topic:Technology of Mars Orbiting Exploration
Topic:Technology of Mars Orbiting Exploration

Optimal Firing Attitude Design for Mars Probe “Tianwen-1” Braking and Capture

  • XIN Sibo1, XU Liang1, ZHAO Xunyou1, ZHENG Yiyu1, MA Rui2
Author information +
History +

Abstract

To optimize ignition attitude design during Mars capture and braking of China’s first autonomous Mars exploration mission “Tianwen-1”, an analysis idea and a solution under the constraint of the whole vehicle were proposed. Firstly, the trajectory dynamics model in the capture phase was established. According to the pre-capture trajectory and the post-capture target trajectory, optimal thrust direction and ignition time in the orbit plane were solved by Newton iteration method with minimum fuel consumption as optimization objective, and thrust vector was obtained. Combined with illumination and measurement and control constraints of the detector, deflection range around thrust direction was determined. Finally, referring to the layout of star sensors, occlusion of star sensors by celestial bodies at different deflection angles during the whole process was analyzed, and the number of available star sensors and the available duration were calculated. The optimal ignition attitude was determined according to the principle of optimal available duration. The actual on-track braking capture results show that the semi-major axis deviation after track control is less than 947.122 km (semi-major axis variation of 102346.152 km), and the eccentricity deviation is less than 0.0021. At the same time, the whole process can meet the requirements of the whole device for measurement and control and illumination. During the whole acquisition process, at least two star sensors are available at any time, and compared with the telemetry results, the simulation error of the available duration of star sensors is less than 0.225 h.

Keywords

Mars probe / braking and capture / firing attitude

Cite this article

Download citation ▾
XIN Sibo, XU Liang, ZHAO Xunyou, ZHENG Yiyu, MA Rui. Optimal Firing Attitude Design for Mars Probe “Tianwen-1” Braking and Capture. Journal of Deep Space Exploration, 2023, 10(1): 19‒27 https://doi.org/10.15982/j.issn.2096-9287.2023.20220002

References

[1] RANIERI C L,OCAMPO C A. Indirect optimization of spiral trajectories[J]. Journal of Guidance,Control,and Dynamics,2006,29(6):1360-1366
[2] PONTANI M,CONWAY B A. Particle swarm optimization applied to space trajectories[J]. Journal of Guidance Control,and Dynamics,2010,33(5):1429-1441
[3] GARG D A,HAGER W W,RAO A V. Pseudospectral methods for solving infiniehorizon optimal control problems[J]. Automatica,2011,47(4):829-837
[4] HECHLER M,YANEZ A. Mars express orbit design[J]. Acta Astronautica,2003,53(4):497-507
[5] SANCHE Z PEREZ J M,CANABAL R. Review of venus express mission analysis[C]//18th International Symposium on Space Flight Dynamics,2004:245.
[6] 李军锋,龚胜平. 有限推力模型火星探测捕获策略分析[J]. 中国科学:物理学力学天文学,2013,43(6):781-786
LI J F,GONG S P. Analysis of capture strategies for Mars explorer with finite-thrust[J]. Sci Sin-Phys Mech Astron,2013,43(6):781-786
[7] 李爽,彭玉明,陆宇平. 火星EDL导航、制导与控制技术综述与展望[J]. 宇航学报,2010,3(3):621-627
LI S,PENG Y M,LU Y P. Review and prospect of Mars EDL navigation guidance and control technologies[J]. Journal of Astronautics,2010,3(3):621-627
[8] 闵学龙,潘腾,郭海林. 火星探测器使命轨道捕获策略研究[J]. 航天器工程,2008,17(6):39-43
MIN X L,PAN T,GUO H L. Analysis of orbit capture method for Mars vehicle[J]. Spacecraft Engineering,2008,17(6):39-43
[9] 陈杨,赵国强,宝音贺西,等. 精确动力学模型下的火星探测轨道设计[J]. 中国空间科学技术,2011,31(2):8-15
CHEN Y,ZHAO G Q,BAOYIN H X,et al. Orbit design for Mars exploration by the accurate dynamic model[J]. Chinese Space Science and Technology,2011,31(2):8-15
[10] 方宝东,吴美平,张伟. 火星引力捕获动力学与动态误差分析[J]. 力学学报,2015,47(1):15-23
FANG B D,WU M P,ZHANG W. Mars gravity capture dynamic model and error analysis[J]. Chinese Journal of Theoretical and Applied Mechanics,2015,47(1):15-23
[11] EDELBAUM T N. Optimal Low-thurst transfer between circular and eliptical orbits[J]. Journal of ASME,1962,84(2):134-141
[12] GOBETZ F W. Optimal variable-thrust transfer of a power-limited rocket between neighboring circular orbits[J]. AIAA Journal,1964,2(2):339-343
[13] JIANG F,BAOYIN H X,LI J. Practical techniques for low-thurst trajectory optimization with homotopic approach[J]. Journal of Guidance,Control,and Dynamics,2012,35(1):245-258
[14] 李革非,韩潮. 月球捕获控制分析[C]//全国第十二届空间及运动体控制技术学术年会. 中国自动化学会:桂林,2006.
[15] 刘玥,荆武兴. 利用虚拟卫星法求解火星探测器近火点制动策略[J]. 哈尔滨工业大学学报,2013,45(1):14-18
LIU Y,JING W X. Mars probe near-center braking strategy using virtual satellite method[J]. Journal of Harbin Institute of Technology,2013,45(1):14-18
[16] 刘博,王云财,张松涛,等. 火星探测器制动捕获多目标优化策略[J]. 动力学与控制学报,2019,17(4):356-361
LIU B,WANG Y C,ZHANG S T,et al. Multi-objective optimization strategy for brake capture of Mars explorer[J]. Journal of Dynamics and Control,2019,17(4):356-361
[17] FISCHER J,DENIS M. Mars orbit insertion — a new challenge for Europesuccess with ESA’s Mars express [C]//European Space Operations Centre. IEEEAC,European Space Operations Centre:[s. n. ],2004.
[18] 罗绪盛,麻娜,荆武兴等. 采用有限推力的火星捕获制动策略[J]. 西北工业大学学报,2017,35(2):348-354
LUO X S,MA N,JING W X,et al. Capture and brake strategy for Mars explorer with finite-thrust[J]. Journal of Northwestern Polytechnical University,2017,35(2):348-354
[19] 刘玥. 火星探测器近心点制动与轨道保持优化设计[D]. 哈尔滨:哈尔滨工业大学,2011.
LIU Y. Optimal design for Mars probe in near-center braking and orbit keeping[D]. Harbin:Harbin Institute of Technology University,2011.
[20] 朱静芬. 关于牛顿类迭代法的收敛性和误差分析[D]. 杭州:浙江大学,2004.
ZHU J F. On the convergence and error analysis of Newton's iterative method[D]. Hangzhou:Zhejiang University,2004.
PDF(6107 KB)

Accesses

Citations

Detail

Sections
Recommended

/